
TIBCO WebFOCUS®

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

App Studio Maintain Data Getting Started

Release 8.2 Version 04 and Higher
March 2021
DN4501622.0321

Contents

1. Introducing App Studio Maintain Data .7

Road Map: Where Should You Go? . 7

What Is App Studio Maintain Data? . 7

Challenge of Accessing Information. .7

How App Studio Maintain Data Works. 8

N-Tier Applications. 8

Leveraging the Power of the Reporting Server. 8

What App Studio Maintain Data Can Do for You. 9

What Is Next?. 9

Overview of Developing App Studio Maintain Data Applications . 9

Step 1: Creating the Domain. .9

Step 2: Describing the Data. 10

Step 3: Creating the Front End. .10

Step 4: Creating the Data Access Logic. 10

Step 5: Setting Up Front End and Data Access Procedures to Call Each Other. 11

Step 6: Run the Application. 12

2. App Studio Maintain Data Tutorial . 13

Before You Begin . 13

Creating a Domain .14

Viewing the Structure of a Data Source in the Requests & Data Sources Panel14

Designing a Form .16

What Are Data Source Stacks?. 17

Components of a Procedure in the Requests & Data Sources Panel.17

Moving Controls on a Form. 17

Saving Your Work .18

Running Your Page Locally . 18

Using Radio Buttons . 19

Stacks and Implied Columns. 20

Giving Your Form a New Title . 21

Writing Data to the Data Source . 22

Writing Functions. 22

About the Maintain Data Editor. 24

App Studio Maintain Data Getting Started 3

Finding or Replacing Text Using the Find Group. .25

Placing the Cursor Using the Position Group. 26

Clearing Data From Stacks. 31

Assigning the Function to the Add Button. .32

Adding a Form to Display Data From a Data Source .33

Extracting Data From a Data Source Into a Stack. 34

Adding an HTML Table to Your Form. 35

Creating a Link From One Form to Another. .37

Adding Form Navigation Buttons . 38

Adding Images to Your Application . 39

3. App Studio Maintain Data Concepts . 43

Set-based Processing . 43

Which Processes Are Set-based?. .44

How Does Maintain Data Process Data in Sets?. 46

Creating and Defining Data Source Stacks: An Overview. 46

Creating a Data Source Stack. 47

Defining Data Source Columns in a Data Source Stack. 47

Creating Data Source Stack User-Defined Columns. 51

Copying Data Into and Out of a Data Source Stack. .52

Referring to Specific Stack Rows Using an Index. 53

Looping Through a Stack. .54

Sorting a Stack. 55

Editing and Viewing Stack Values. 55

Default Data Source Stack: The Current Area. 56

Maximizing Data Source Stack Performance. 57

Controlling the Flow of a Procedure . 58

Executing Other Maintain Data Procedures . 58

Calling a Maintain Data Procedure on a Different Server. 59

Passing Variables Between Procedures. 60

Accessing Data Sources in the Child Procedure. 62

Data Source Position in Child Procedures. 62

Advantages of Modularizing Source Code Using CALL. 63

Contents

4

Optimizing Performance: Data Continuity and Memory Management.63

Forms and Event-driven Processing .64

How to Use Forms. 66

Designing a Form. 66

Designing Event-driven Applications. 67

Creating Event-driven Applications. 67

Reading From a Data Source . 67

Repositioning Your Location in a Data Source. .68

Writing to a Data Source .69

Evaluating the Success of a Simple Data Source Command. .70

Evaluating the Success of a Stack-based Write Command. 70

Transaction Processing .71

Classes and Objects . 72

What Are Classes and Objects?. .73

4. Creating an Update Application With Update Assist .75

Starting Update Assist . 75

Update Assist: Segment & Field Options . 76

Update Assist: Navigation Options . 83

About Your Update Assist Application . 84

Calendar Control for Date-Formatted Fields. 86

Date-Stamping Fields. 86

Auto-numbering Fields in Update Assist Applications. 87

Continuing to Display Current Values After a New Action. .88

Calling an Update Assist Procedure From an App Studio Report . 88

Calling an Update Assist Application From an App Studio Report Example.90

Usage Notes .96

A. App Studio Maintain Data Sample Data Sources . 99

Fannames Data Source . 99

Fannames Master File. 99

Fannames Structure Diagram. .100

Users Data Source . 100

Users Master File. .100

Contents

App Studio Maintain Data Getting Started 5

Users Structure Diagram. .100

Contact Data Source .100

Contact Master File. 101

Contact Structure Diagram. 101

Legal and Third-Party Notices . 103

Contents

6

Chapter1
Introducing App Studio Maintain Data

The following topics offer introductory information about App Studio Maintain Data for
new users.

These topics also provide an overview of the step-by-step process for developing an
application, from creating the interface to running the application.

In this chapter:

Road Map: Where Should You Go?

What Is App Studio Maintain Data?

Overview of Developing App Studio Maintain Data Applications

Road Map: Where Should You Go?

Welcome to App Studio Maintain Data.

If you are new to App Studio Maintain Data, read What Is App Studio Maintain Data? on
page 7 and then work through the App Studio Maintain Data Tutorial on page 13.

If you are interested in a quick overview of how to develop a App Studio Maintain Data
application, read Overview of Developing App Studio Maintain Data Applications on page
9.

What Is App Studio Maintain Data?

App Studio Maintain Data is an application development tool that creates web-based data
maintenance applications. Using App Studio Maintain Data and its multi-platform 4GL
language, you can easily create, test, and deploy complex business applications that span the
Internet, IBM mainframes, midrange servers, and workstations.

Challenge of Accessing Information

If your company is like most companies, you probably have several different computing
systems in operation. For example, your accounting and payroll systems are running on a
midrange UNIX computer, while your inventory system is running on an IBM mainframe. Most of
the employees have personal computers on their desks and are accustomed to point-and-click
interfaces.

App Studio Maintain Data Getting Started 7

With App Studio Maintain Data, you can develop applications with graphical front-ends that run
on personal computers and access data on any computer system in your company.

How App Studio Maintain Data Works

Using the HTML canvas, you develop the application front-end (or user interface). Then, you
develop the code that extracts data from your data sources and updates the data sources with
new data.

At run time, end users start the application and access a Reporting Server where the data or
procedures reside. The application extracts data from the data source, displays it for the end
users to see, updates the data source with new information, and runs any procedures.

N-Tier Applications

App Studio Maintain Data applications are called n-tier applications because they are capable
of distributing processing over many platforms. N-tier applications offer the following
advantages:

You can access data on multiple platforms, forming relationships among disparate data
sources.

Your application logic runs on the machine most capable of performing it. For example,
PCs are ideally suited for displaying the user interface of your application. On the other
hand, MVS machines may not be capable of displaying pretty pictures, but they pack plenty
of processing power. An App Studio Maintain Data application front-end runs on a PC,
whereas the data access code can run on an MVS machine.

You can speed up your applications. Procedures that access data can run on the platform
where the data resides, ensuring that any aggregation or screening takes place
immediately. This means that your application is not shipping large quantities of data
across a network to be aggregated or screened somewhere else. Less network traffic
means increased application speed.

Leveraging the Power of the Reporting Server

The Reporting Server is available for every major operating system, MVS, UNIX, Windows, Open
VMS, CICS, and VM/CMS. Using its data adapters, App Studio can access every major
database management system, including Informix, Sybase, DB2, and Ingres. The Reporting
Server can also run procedures written in another language. For example, COBOL, C, or other
3GL programs, CICS transactions, IMS transactions, RDBMS stored procedures, and FOCUS
procedures.

What Is App Studio Maintain Data?

8

Because Information Builders has already worked out the complications of different operating
systems, communications protocols, and data access languages, the developer or end user
does not need to worry about or even know where their data is coming from.

What App Studio Maintain Data Can Do for You

Using App Studio Maintain Data, you can:

Easily develop web-based data maintenance applications with no prior knowledge of HTML,
Java®, or complex 3GLs.

Access and update data on every major operating system and every major database system
(using the power of the Reporting Server).

Access and update data from different platforms at the same time. For example, the
inventory system on MVS and the accounting system on UNIX.

Take advantage of the strengths of your computing systems while sidestepping the
weaknesses by partitioning your application among the platforms that can support them.

What Is Next?

For more information on how to use App Studio Maintain Data, work through App Studio
Maintain Data Tutorial on page 13.

If you want to develop your own App Studio Maintain Data applications immediately, read
Overview of Developing App Studio Maintain Data Applications on page 9.

Overview of Developing App Studio Maintain Data Applications

Now that you know what a App Studio Maintain Data application is and how it works, you are
ready for a step-by-step view of the development process. This section summarizes the steps.

Another way to get started immediately developing App Studio Maintain Data applications is by
using Update Assist. All you need is a Master File for the data source for the application you
want to create.

Step 1: Creating the Domain

Your first step is to create the Domain for the application.

To start App Studio, from the Start menu, click the WebFOCUS App Studio shortcut, under the
Information Builders folder.

1. Introducing App Studio Maintain Data

App Studio Maintain Data Getting Started 9

Step 2: Describing the Data

From the File/Folder Properties panel, set the Application Paths attribute to the location of the
Master Files and data source files.

Step 3: Creating the Front End

Your next step in developing an application will probably be to create the front end, meaning
the user interface with which the end user interacts. Your user interface is made up of forms,
which you develop using the HTML canvas.

1. From the Requests & Data sources panel, create an external or embedded Maintain Data
request.

2. Expand the node for the request.

3. Right-click Forms and select New form.

One of your procedures is designated as the starting procedure, which means that App Studio
Maintain Data runs this procedure to run your application. You probably want the opening form
of your application to be in this procedure (although it does not have to be here). You use the
Properties dialog box to specify the starting procedure.

App Studio Maintain Data supplies you with a form (named Form1) in every procedure and
supplies the code to display this form immediately after running the application. Using the
name Form1 in the initial form of your application is recommended.

After you have created your forms, you can edit them using the HTML canvas.

You can also create tasks and actions that call Maintain Data functions (Cases).

Step 4: Creating the Data Access Logic

Your next step in developing the application is to create the data access logic, meaning the
code that extracts data from the data source, manipulates it, and writes it back to the data
source.

You code all of your data access logic using the Maintain Data language. The Maintain Data
language is a robust yet simple, object-based 4GL. It is consistent across all platforms while
incorporating the functionality of a 3GL and the data access capabilities of SQL.

You must specify which data sources you want a procedure to access before writing any code
to read or write to that data source.

Overview of Developing App Studio Maintain Data Applications

10

Procedure: How to Make a Procedure Access a Database

Specify which data sources you want a procedure to access.

1. If you want to put your data access code in a separate procedure (to take advantage of n-
tier processing), create a procedure in your application.

2. In the Requests & Data Sources panel, right-click the procedure, and then click Use data
sources.

3. Select the data sources this procedure will access and click OK.

Procedure: How to Write Maintain Language Code

1. Double-click the procedure to open the Maintain Data Editor.

2. Between the CASE Top and END keywords, specify the code that your procedure will run.
You can do this in either of the following ways:

Right-click in the window and click Language Wizard in the shortcut menu. Then, follow
the instructions to generate your Maintain Data language code.

Type the code that your function runs. For more information, see Command Reference
in the App Studio Maintain Data Language Reference manual.

You can obtain context-sensitive Help by selecting any keyword and pressing the F1 key. Notice
also that your procedure code is color-coded.

Step 5: Setting Up Front End and Data Access Procedures to Call Each Other

After you have written the front-end and data access procedures, you must set them up to call
each other, and pass data back and forth. Since all variables are local, meaning defined only
within the context of a procedure, you must pass these variables back and forth.

For example, suppose you have an application running on a Windows web server that accesses
accounting data on UNIX and inventory data on MVS. A procedure called GetAccData, accesses
the data on the UNIX machine and a procedure called GetInvData, accesses the data on the
MVS machine. Both of these procedures pass data back to the Start procedure on the
Windows machine, which displays a form with this data.

Procedure: How to Set Up Procedures to Call Each Other

1. Declare all variables in the calling procedure (parent) and called procedure (child).

1. Introducing App Studio Maintain Data

App Studio Maintain Data Getting Started 11

2. In the called procedure, use the Procedure Parameters dialog box to declare what
parameters it expects to receive and what data it passes back to the calling procedure. To
open this dialog box, right-click the procedure and in the shortcut menu, click Add
parameters, as shown in the following image.

3. In the calling procedure, use the CALL command. The parameters of the CALL command
determine the data that gets passed to the called procedure and what data gets passed
back. You can easily place a CALL statement in your procedure using the Language
Wizard.

For more information, see Command Reference in the App Studio Maintain Data Language
Reference manual.

Step 6: Run the Application

After you have created all of your application procedures, it is time to test them. Click the Run
button to run the HTML page to see what it looks like.

If there are any errors, they are listed in the Output window.

Overview of Developing App Studio Maintain Data Applications

12

Chapter2
App Studio Maintain Data Tutorial

Welcome to the App Studio Maintain Data tutorial. In this chapter, you will be creating an
App Studio FanClub application. This application enables you to maintain a data source
of App Studio Maintain Data fans. You will be able to add fans, update fans, and view
existing fans. This tutorial assumes no prior App Studio Maintain Data experience.

In this chapter:

Before You Begin

Creating a Domain

Viewing the Structure of a Data Source in the Requests & Data Sources Panel

Designing a Form

Saving Your Work

Running Your Page Locally

Using Radio Buttons

Giving Your Form a New Title

Writing Data to the Data Source

Adding a Form to Display Data From a Data Source

Adding Form Navigation Buttons

Adding Images to Your Application

Before You Begin

Before you begin working on the App Studio FanClub application, make sure you have
completed the following steps:

Installed and verified a Reporting Server.

Installed App Studio on your machine.

Verified the connection of your machine to the Reporting Server.

App Studio Maintain Data Getting Started 13

Checked to see that you have the sample tutorial files required for the App Studio Maintain
Data tutorial on your machine. This includes the following files:

The fannames data source (both the .mas and .foc files).

The addafan.gif, currfan.gif, fan.gif, and spiral.gif image files.

Note: All of the FanClub files are installed under ibi/apps/maintain. The images are located
under ibi/apps/maintain/images.

Creating a Domain

Before you can do any development work in App Studio Maintain Data, you must:

Create a Domain folder.

Using the Application Paths property in the File/Folder Properties panel, attach the Maintain
Data app folder for Master Files and data files (.foc files).

Procedure: How to Create a Maintain Data Procedure

1. Right-click the Domain folder you created, click New, and then click HTML/Document.

or

Using the HTML/Document command in the Content group, create a new HTML file in the
Domain folder.

2. In the Requests & Data Sources panel, from the New drop-down menu, select External
Request and then select Maintain Data: New.

3. Name the procedure Start.

4. In the Requests & Data Sources panel, right-click the Start procedure.

5. Select Use data sources and select fannames.mas in the Data Sources dialog box.

Note: If the fannames.mas file is not in the Data Sources dialog box, click the New icon
and navigate to the maintain folder under the Data Servers directory.

Viewing the Structure of a Data Source in the Requests & Data Sources Panel

After you use the fannames data source in the Start procedure, its name appears in the
Requests & Data Sources panel under the Data Sources folder, with a plus sign (+) next to it.

Creating a Domain

14

If you click the plus sign (+) next to fannames, App Studio Maintain Data displays the
segments in the fannames data source, as shown in the following image.

A segment is a collection of fields that have a one-to-one relationship to each other. The
fannames data source has one segment, called CUSTOMER.

Note: This data source has only one segment. Hierarchical data sources can have more than
one segment. If you would like to see data sources with more than one segment, migrate the
CAR data source description (one of the Information Builders standard sample files) into your
folder and view it. You can then delete the CAR data source description from your folder by
selecting it and clicking Delete.

If you click the plus sign (+) next to CUSTOMER, you see the fields in that segment, as shown
in the following image.

Since fannames has only one segment, these are the only fields in the fannames data source.

The key next to the SSN field indicates that SSN is a key field, which means it uniquely
identifies the segment instance. In the fannames data source, each fan has a unique SSN,
and no other fan should have the same number.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 15

Designing a Form

An example of the first form that you will create for the FanClub application is shown in the
following image.

This form enables users to add a new fan to the data source.

The information typed into this form will be written to the fannames data source, so it should
correspond to the fields in the data source. The fastest way to create the fields on the form is
to use the existing data source fields. Therefore, your first task is to add data source fields to
the form.

Procedure: How to Add Data Source Fields to a Form

1. In the Requests & Data Sources panel, expand Forms under the Start procedure.

2. Activate the Htmlpage1 tab.

3. Drag the Form1 form to the canvas.

4. Click Yes when prompted to create a multi-page container for better layout and
presentation.

5. In the Requests & Data Sources panel, right-click Stacks under the Start procedure and
select New data source stack.

6. In the Stack name field, type AddFanStack.

7. In the Stack Editor dialog box, expand fannames, then expand CUSTOMER, and then select
SSN and use the arrow button to move the field to the stack column.

8. Click OK.

Designing a Form

16

What Are Data Source Stacks?

App Studio Maintain Data procedures do not directly display or manipulate information in a
data source. Instead, Maintain Data uses data source stacks as intermediaries between users
and the data source.

A stack is a non-persistent (or in-memory) table where you can store and manipulate data from
one or more data sources. App Studio Maintain Data procedures use stacks to hold values you
read from the data source and to manipulate data before writing it back to the data source.

Since this is a new procedure, there are no stacks yet. You are going to create a stack named
AddFanStack, instead of using the default, CustomerStk. The structure of the stack is based
on the fields in the data source, in other words, the stack is going to have the columns SSN,
LASTNAME, FIRSTNAME, and so on. However, this stack will be empty until you do something
to put data in it.

Components of a Procedure in the Requests & Data Sources Panel

In the Requests & Data Sources panel, there have been some additions to the components of
Start.

1. Switch to the HTML page tab, and in the Requests & Data Sources panel, expand
AddFanStack.

2. Select all of the fields, except for TITLE, USER, FOCCOUNT, or FOCINDEX and, from the
Requests & Data Sources panel, drag the fields to the canvas and drop them on the form.

Note: If you do not see AddFanStack, you need to force a parse by selecting Parse from the
Maintain Data Editor context menu.

Moving Controls on a Form

When you placed these fields on the form, App Studio Maintain Data placed them in a column.
Rearrange them so that the Firstname and Lastname fields are next to each other in a row,
and City, State, and Zip fields are also next to each other.

Procedure: How to Move Controls on a Form

1. Move Lastname (by clicking and dragging it to the new location) far enough to the right so
that you can move Firstname up and to the left of it.

2. Move the Firstname, Company, Address, and City fields up.

3. Drag State to the right of City.

4. Drag Zip to the right of State.

5. Move the Phone, Email, and Enrollment Date fields up.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 17

6. Select the form. On the Utilities tab, select Tab Order and reorder the fields to reflect the
order in which they appear on your form.

In the following image, the Firstname and Lastname labels have been renamed to First and
Last, respectively. You can put each of the labels in edit mode, one-by-one, and modify the
text.

Note: You can use the Positioning tab to align objects on the form by selecting the appropriate
positioning component in the Positioning group.

Saving Your Work

Before you go any further, save your work. From the Quick Access Toolbar, click the Save
button.

Whenever you make changes to a component, App Studio Maintain Data places an asterisk (*)
next to the component name in the Requests & Data Sources panel and in the title bar.

Running Your Page Locally

Run the page from the open canvas using the Run button on the Quick Access Toolbar to see
how it looks.

Saving Your Work

18

App Studio Maintain Data opens the application, as shown in the following image.

This application enables you to type information into the fields displayed in the form (which
places data into the data source stack AddFanStack). Next, you will improve the functionality
and appearance of the application.

Using Radio Buttons

When you dragged the fields from the data source into the form, you deselected the TITLE and
USER fields so they do not appear in the form.

By not copying TITLE into the form, you prevent users from typing an arbitrary title in the field.
We will give them the option to select Mr., Mrs., or Ms., using a radio button control. This
prevents them from typing arbitrary titles.

The task of using radio buttons can be separated into three steps:

1. Adding the group of radio buttons to your form.

2. Adding a tool tip text to the group of radio buttons. This step is optional, but it
demonstrates how you can display useful information to your users.

3. Binding the results of the selection to a stack.

Procedure: How to Add a Group of Radio Buttons to the Form

1. On the Controls tab, click the Radio Button control.

2. Draw a small rectangle on the form next to the SSN, First, and Last fields.

3. Select the control on the canvas and bring up the Settings panel.

4. Add the three values: Mr., Mrs., and Ms.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 19

Your radio buttons should resemble the following image (you may need to adjust the size
of your control to see all three of them).

Procedure: How to Add Tool Tip Text

1. Make sure you have selected your group of radio buttons.

2. In the Properties panel, select the Title property.

3. In the empty field to the right, type Please select one, as shown in the following image.

You can move your cursor over the radio buttons at run time to see the tooltip.

Procedure: How to Bind the Results of the Selection to a Stack

1. Select your group of radio buttons.

2. Drag the TITLE field from the stack in the Requests & Data Sources panel to the Selection
to input area in the Settings panel.

If you wish, save your work and run your application again to see how it looks. Make sure
to close the application before continuing the tutorial.

Stacks and Implied Columns

When you created AddFanStack using the Select Segment Fields dialog box (see How to Add
Data Source Fields to a Form on page 16), you deselected the TITLE and USER fields. Since
you deselected these fields, why are they showing up as columns in the data source stack?

Using Radio Buttons

20

These fields are showing up as columns in the data source stack because of the way App
Studio Maintain Data defines data source stacks with the INFER command. When you use a
field in the data source to define a column in a data source stack, App Studio Maintain Data
defines columns based on the rest of the fields in that data source. If your data source is
hierarchical, the rest of the fields in the segment and the key fields in any parent segment.

App Studio Maintain Data includes all of these fields in your data source stack so that when
you update your data source from the data source stack, it knows the path to these fields.

These columns are called implied columns.

There is one field from the fannames data source that you have not placed on the form: the
USER field. The user will not be entering this field. Instead, it will be generated by the
application.

Giving Your Form a New Title

When you ran your application, you probably noticed that when hovering over the form with the
mouse, the tooltip said Form1. You can change this so that your application displays a more
useful title at run time.

Procedure: How to Give Your Form a Title

1. Deselect all controls in your form (that is, click anywhere in the form that is not a control).

2. In the Properties panel, change the Title property to Add a New Member, as shown in the
following image.

If you wish, save your work and run your application to see how it looks. Make sure to close
the application before continuing the tutorial.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 21

Writing Data to the Data Source

Your next step is to enable users to write the data that they type in this form to the data
source. They do this by clicking a button that says Add at the bottom of the form. You add the
button to your form and write the Maintain Data Language source code that inserts the data
into the data source.

Procedure: How to Add a Button to Your Form

1. In the HTML canvas, on the Components tab, click Button.

2. Move the cursor to the bottom of your form and draw a rectangle where you want to place
the button.

3. In the Properties panel, change the text in the value property for the button to Add. The
text in the button is automatically selected when you create the button, so all you have to
do is type your new text, as shown in the following image.

4. In the Properties panel, notice that the first property is the unique identifier and its value
is button1. This is the internal program name of the button (how App Studio Maintain Data
refers to it).

By default, App Studio Maintain Data names forms and controls with their type and a
unique number. If you are planning to refer to a form or control in other places in the
procedure, giving it a more descriptive name is recommended.

5. Change the name of the button to AddButton. Change the unique identifier and Name
properties.

Writing Functions

Now that you have created a button that the user will click, you must create the code to run
when the user clicks the button.

You put this code in a function. A function is a series of commands in a procedure grouped
together as a unit of control. A function accomplishes a task, such as calculating values,
extracting data from a data source to place in a data source stack, or writing information to a
data source.

Procedure: How to Write a Function

1. In the Requests & Data Sources panel, select the Start procedure.

2. Right-click Start.

Writing Data to the Data Source

22

3. In the shortcut menu, click New function.

4. In the New Function dialog box, give your function the name AddFan, as shown in the
following image.

5. Click OK.

App Studio Maintain Data opens the source code for your function in the Maintain Data Editor.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 23

About the Maintain Data Editor

Underlying many of the graphical elements of App Studio Maintain Data is Maintain Data
language source code. The Maintain Data Text Editor enables you to create, view, and edit the
source code for procedures, procedure components, and other types of files required by your
Maintain Data applications. The Maintain Data Text Editor tab opens when you create a new
function or edit an existing one. It contains two groups, Find and Position. The Maintain Data
Text Editor tab is shown in the following image.

All App Studio Maintain Data procedures start with the keyword MAINTAIN (which must be in
uppercase) and end with the keyword END (also in uppercase), as shown in the following
image. When you create a procedure, App Studio Maintain Data includes these two keywords
automatically.

MAINTAIN FILE fannames

$$Declarations

Case Top
Infer fannames.CUSTOMER.SSN into AddFanStack;
Winform Show Form1;
EndCase

Case AddFan
EndCase

END

Note: The text in your window may wrap differently.

FILE fannames tells App Studio Maintain Data the data sources this procedure is going to
access. In the list of components, there is a Data Sources folder with a fannames data source
below it.

Data source names (up to 15) follow the MAINTAIN FILE command and are separated by the
word AND.

Writing Data to the Data Source

24

Following this line is a comment line beginning with $$. You can tell that this is a comment
since green (the default) is the color for comments. This comment line is automatically
generated when you create a procedure.

This particular comment, $$Declarations, is generated automatically by App Studio Maintain
Data when you created the procedure. If you create any new variables using the Request &
Data Sources panel, App Studio Maintain Data places the source code after this comment.

Case Top begins the definition of the Top function. This definition takes up several lines and
ends with the keyword EndCase. The first statement, which begins with Infer, defines the
AddFanStack data source stack.

The next line of the Top function, Winform Show Form1; is the code that displays Form1 at run
time. This code was generated automatically when you created the procedure.

Finally, the Case AddFan and EndCase define an additional function in this procedure.

Finding or Replacing Text Using the Find Group

The Find group contains options that enable you to find or replace text.

The commands in the Find group are:

Find

Finds the specified text. You can also press Ctrl+F to activate the Find dialog box.

Next

Finds the next instance of the specified text.

Previous

Finds the previous instance of the specified text.

Replace

Replaces the specified text with different text.

Select All

Selects all of the text in the procedure.

Reference: Find Dialog Box

You can use the options on the Find dialog box to indicate how to search for information.

The options on the Find dialog box are:

Find What

Provides a text box where you can specify the text that you want to find.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 25

Match case

Select this option to match the uppercase or lowercase value, as specified in the Find
what field.

Match whole words only

Select this option to match the whole word only.

Find Next

Allows you to find the next instance of your search term.

Reference: Replace Dialog Box

You use the options on the Replace dialog box to indicate how to use the find feature to find
and replace information.

The options on the Replace dialog box are:

Find What

Provides a text box where you can specify the text that you want to find.

Replace With

Provides a text box where you can specify the text that is going to replace the text for
which you are searching.

Match case

Select this option to match the uppercase or lowercase value, as specified in the Find
what field.

Match whole words only

Select this option to match the whole word only.

Find Next

Allows you to find the next instance of your search term.

Replace

Replaces the search information that you specified in the Find What field with the text or
other information that you indicated in the Replace With field.

Placing the Cursor Using the Position Group

The Position group allows you to place your cursor at the desired line and allows you to turn off
line numbers.

Writing Data to the Data Source

26

The commands in the Position group are:

Goto Line

Displays the current line your cursor is on. You can type a different line number into the
text box to place your cursor on that line.

Show Line Numbers

When selected, displays line numbers. This option is selected by default.

Procedure: How to Build Maintain Data Language Code Using the Language Wizard

1. Ensure that your cursor is in the line between Case AddFan and EndCase.

2. Right-click in the Maintain Data Editor.

3. From the shortcut menu, select Language Wizard.

The Maintain Language Wizard opens. The Maintain Language Wizard helps you build
Maintain Data language source code without typing the syntax yourself.

The first Language Wizard window asks you to specify, in general, what kind of task you
want to accomplish.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 27

4. Select Update records in a data source, as shown in the following image.

5. Click Next.

Now that you have specified the general task you want to perform, the Language Wizard
narrows the task further. Notice that after each task, there is a word in parentheses. This
is the name of the Maintain Data language command that executes that task. Additionally,
notice the box at the bottom of the window contains the Maintain Data language code
being generated by the Language Wizard. As you move through the Language Wizard, you
see more code.

Writing Data to the Data Source

28

6. Select Add one or more new data source records (Include), as shown in the following
image.

7. Click Next.

Now that you have specified which command to use, the Language Wizard asks you to
supply the parameters for that command. In this case, you must tell it which data source
is being updated and from where.

You first specify which data source is being updated.

Note: The Available fields list contains the data sources that you are using in this
procedure, not the list of data sources in the folder.

8. Expand the fannames data source.

9. Expand the CUSTOMER segment.

10. Copy the SSN field into the Fields to include box by clicking SSN and then clicking the right
arrow, or by double-clicking SSN.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 29

Notice that, as with stacks, all the other fields in the CUSTOMER segment are also copied,
as shown in the following image. This is because the Maintain Data language assumes
that if you are adding new data source records to a data source, you want to write
information into all the fields in a segment. For more information, see Stacks and Implied
Columns on page 20.

Notice that the Maintain Data language box at the bottom now reads as follows:

Include fannames.CUSTOMER.SSN;

11. Click Next.

Your final step is to indicate where this data is being written from, which in this case, is
AddFanStack.

12. Select Stack.

13. Choose AddFanStack from the list.

Writing Data to the Data Source

30

14. Leave the 1 in the Starting from row field and select the All the records in the selected
stack option, as shown in the following image.

Notice that the Maintain Data language box at the bottom now reads as follows:

For all include fannames.CUSTOMER.SSN from AddFanStack;

15. Click Finish.

App Studio Maintain Data places the source code that the Language Wizard generated in
between the Case AddFan and EndCase lines.

Clearing Data From Stacks

Now that you have included the data from AddFanStack into the fannames data source, it is a
good idea to clear the data from AddFanStack. Use the Language Wizard to write this code.

Procedure: How to Clear the Data From a Stack Using the Language Wizard

1. Place the insertion point after

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 31

For all include fannames.CUSTOMER.SSN from AddFanStack;

but before

EndCase

2. Right-click in the Maintain Data Editor and, from the shortcut menu, click Language Wizard.

3. Select Operate on a stack and click Next.

4. When the Language Wizard asks you which stack operation you would like to perform,
select Clear the contents of a stack and click Next.

The Language Wizard asks you to select one or more stacks to clear.

5. Select AddFanStack and click Finish. The syntax should read as follows:

Stack clear AddFanStack;

Assigning the Function to the Add Button

Now that you have written the code that inserts user data into the data source, you need to
designate that when the user clicks the Add button, this function is performed. You do this
using the Tasks & Animations panel.

Procedure: How to Assign a Function to an Event

An event is something that a user performs, such as clicking a button or moving to a field.
Events are done as tasks with Ajax calls. The target type and request is mntname.case.

1. In the Tasks & Animations panel, click New to create a new task. The Trigger Type is Click.
The Trigger Identifier is AddButton.

2. In the Requests/Actions section, select Run Request, then select Start, and then select
Start.AddFan.

This will make the Add button call that case (function).

Note: You need to have Start.Connect in the load task or this will not work.

3. Run your application to see how it looks.

Writing Data to the Data Source

32

4. Add your name to the fannames data source. You are now included in the App Studio
FanClub application, as shown in the following image.

5. Close the application before continuing the tutorial.

Adding a Form to Display Data From a Data Source

The FanClub application can add names to the fannames data source, but users do not get
much visual feedback from this task. The FanClub application needs to display the contents of
the fannames data source.

This task is divided into the following steps:

1. Add a new form to the application.

2. Build the code to extract the data from the fannames data source using the Language
Wizard.

3. Design the form to display the contents of fannames.

4. Create a link from Form1 to the new form.

Procedure: How to Add a New Form to Your Application

To create a new form, in the Maintain Data Editor, type Winform Show formname when you
have the case created.

1. Create a case OnShowFanButton_Click and type the following:

Winform Show ShowFan;
EndCase

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 33

2. From the HTML canvas, right-click the outer frame of the form and select Add Page.

3. Right-click again and select Show all pages.

4. Drag ShowFan from the Requests & Data Sources panel to the new page container.

5. In the Properties panel, change the title of the form from ShowFan to Show Fan Club
Members.

Extracting Data From a Data Source Into a Stack

Your next step is to create a function named GetFans, which extracts all the information in the
fannames data source and places it into a stack named GetFanStack. Try this yourself or see
the next section for instructions.

Tip: Create the function and then use the Language Wizard to generate the code.

Procedure: How to Extract Data From the Fannames Data Source Into a Stack

1. In the Requests & Data Sources panel, right-click the Start procedure and then click New
function.

2. In the New Function dialog box, name your function GetFans and click OK.

3. Make sure your insertion point is placed after the statement

Case GetFans

but before

EndCase

4. Right-click in the Maintain Data Editor and, from the shortcut menu, click Language Wizard.

The Language Wizard opens.

5. Select Retrieve records from a data source and click Next.

6. Select Starting from the current record position (Next) and click Next.

The Maintain Data language contains two commands to retrieve data from a data source.
This window determines which one you want to use.

7. Select the data source segments or fields whose records you want to retrieve. In the
Available fields box, expand the fannames data source, expand the CUSTOMER segment,
move the SSN field to the Fields to retrieve box and click Next.

This window is where the Language Wizard determines from which data source you are
reading the data. For more information, see Stacks and Implied Columns on page 20.

8. Select All the records in the selected segment and make sure Change the current data
source position to the top is selected and click Next.

Adding a Form to Display Data From a Data Source

34

This ensures that App Studio Maintain Data starts from the beginning of the data source
when retrieving records.

9. Type GetFanStack in the text box to create a new stack, and make sure that Clear the
stack first is selected. You can leave the default value 1 in the Place the records into the
stack field. Click Next.

10. Leave the next window blank since you want to retrieve all records from the data source.
Click Finish.

The Language Wizard should generate the following code:

Reposition fannames.CUSTOMER.SSN;
Stack clear GetFanStack;
For all next fannames.CUSTOMER.SSN into GetFanStack;

Adding an HTML Table to Your Form

You are going to display the fans from the fannames data source using an HTML table. An
HTML table displays the contents of a data source stack in a read-only grid.

Another option for displaying the fans from the fannames data source is to create a report
procedure in App Studio and execute this code whenever you open this form.

Procedure: How to Add an HTML Table to Your Form

1. On the Components tab, click the HTML Table button.

2. Draw a rectangle on the form where you want your HTML table to go on your new ShowFan
form.

3. On the Settings panel, be sure that the Explicit (Requests panel) radio button is selected.

4. From GetFanStack in the Requests & Data Sources panel, drag the LASTNAME,
FIRSTNAME, COMPANY, EMAIL, and TITLE fields into the Table Columns list on the Settings
panel.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 35

Use the Move up and Move down buttons to rearrange these fields so that they are in the
following order: TITLE, FIRSTNAME, LASTNAME, COMPANY, and EMAIL, as shown in the
following image.

You can change the appearance of any of these columns. For example, suppose you want
to change the header titles for the FIRSTNAME and LASTNAME fields so that they read
First and Last.

5. Click Firstname and change Firstname to First.

6. Repeat the process to change Lastname to Last.

Adding a Form to Display Data From a Data Source

36

Your form resembles the following image.

Creating a Link From One Form to Another

Your final step in creating your new form ShowFan is providing a way to open it from Form1. Do
this by adding a button to Form1 that runs the GetFans function and opens the ShowFan form.

Procedure: How to Link From One Form to Another

1. Make Form1 the active window.

2. On the Components tab, click Button.

3. Draw a rectangle to the right of the Add button on Form1.

4. In the Properties panel, change the name and unique identifier for the button to
ShowFanButton and change the value to Show Fans.

5. Create a new task.

6. In the Tasks & Animations panel, select Click for the Trigger Type and select
ShowFanButton for the Trigger Identifier.

7. In the Tasks & Animations panel, from the Requests/Actions section, select Run Request,
select Start, and then select Start.OnShowFanButton_Click.

In the Maintain Data Editor, type Perform GetFans(); in the case. The syntax should read
as follows:

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 37

Case OnShowFanButton_Click
Perform GetFans();
Winform Show ShowFan;
EndCase

8. Run your application to see how it looks.

9. Close the application before continuing the tutorial.

Adding Form Navigation Buttons

When you ran your application and displayed the Show Fan Club Members form, you may have
noticed that the only thing you can do in this window is close the form by closing the browser.

Add some navigation buttons to the FanClub application:

Add a Back button to the Show Fan Club Members form so that you can go back to the Add
a New Member form.

Add an Exit button to the Add a New Member form.

Procedure: How to Add a Back Button

1. Open the ShowFan form.

2. On the Components tab, click Button.

3. Draw a button under the HTML table.

4. Change the text on the button to Back.

5. Change the name and the unique identifier of the button to BackButton.

6. Create a new case called OnBackButton_Click and type Winform Show Form1; in it.

7. Add a task to call the case.

8. In the Tasks & Animations panel, select Click for the Trigger Type and select BackButton
for the Trigger Identifier.

9. In the Tasks & Animations panel, from the Requests/Actions section, select Run Request,
then select Start, and then select Start.OnBackButton_Click.

Procedure: How to Add an Exit Button

1. Open Form1.

2. Place an Exit button named ExitButton at the bottom of your form.

3. Create a new task for the click of the Exit button to call the disconnect request from a
task.

Adding Form Navigation Buttons

38

4. In the Tasks & Animations panel, select Click for the Trigger Type and select ExitButton for
the Trigger Identifier.

5. In the Tasks & Animations panel, from the Requests/Actions section, select Run Request,
then select Start, and then select Start.Disconnect.

6. Run your application to see how it looks.

7. Click the Exit button to close the application.

Adding Images to Your Application

You can use images to improve the appearance and usability of App Studio Maintain Data
applications. This section explains how to:

Add an image to the background of your two forms. This image, spiral.gif, makes your forms
look like pages in a spiral notebook.

Add titles to your two forms.

Add a fan graphic to your form.

Procedure: How to Add a New Background Image to Your Form

1. Open Form1.

2. Make sure all of the controls are deselected so that you can see the properties for the
form.

3. In the Properties panel for the form, locate the Background-image property in the
Background category.

4. Click the mouse in the input area to the right to display the ellipsis button.

5. Click the ellipsis button, browse to Data Servers, EDASERVE, Application, maintain,
images, and select spiral.gif.

Note: Spiral.gif is one of the sample Tutorial files that was placed on your hard drive at
installation. It should be located in \ibi\apps\Maintain\images.

6. Use the Background-repeat property to set it to repeat-y. This makes the image repeat for
the entire height of the form.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 39

Your form resembles the following image.

You may need to move the controls on your form to the right so that they are not
overlapping the spiral.

Procedure: How to Add an Existing Background Image to Your Form

1. Add the spiral image to the ShowFan form.

2. Run your application to see how it looks.

3. Click the Exit button to close the application before continuing the tutorial.

Procedure: How to Add an Image to Your Form

1. Open Form1.

2. Select all the controls on your form by pressing Ctrl+A and move them down so that you
have roughly one inch at the top of your form.

3. On the Components tab, select the Image control.

4. Draw a box in the empty space at the top of the form.

The HTML canvas opens the Open File dialog box.

5. Repeat the steps you followed in How to Add a New Background Image to Your Form on
page 39 to add Addafan.gif to your form.

Adding Images to Your Application

40

6. Add the fan.gif image to your form to the right of the entry boxes. (Repeat steps 3 through
5.)

Your form resembles the following image.

7. Open ShowFan and add the image currfan.gif. (Repeat steps 3 through 5.)

8. Run your application to see how it looks.

9. When you are done, exit your application by clicking Exit.

2. App Studio Maintain Data Tutorial

App Studio Maintain Data Getting Started 41

Adding Images to Your Application

42

Chapter3
App Studio Maintain Data Concepts

The following topics provide an overview of basic App Studio Maintain Data concepts. To
fully exploit the potential and productivity of App Studio Maintain Data, you should
become familiar with concepts including:

Processing data in sets by using stacks.

Controlling the flow of an App Studio Maintain Data application and the procedures
within it.

Developing presentation logic using forms and s.

Reading from and writing to data sources.

Ensuring transaction integrity.

Creating classes and objects.

In this chapter:

Set-based Processing

Controlling the Flow of a Procedure

Executing Other Maintain Data Procedures

Forms and Event-driven Processing

Reading From a Data Source

Writing to a Data Source

Transaction Processing

Classes and Objects

Set-based Processing

Maintain Data provides the power of set-based processing, enabling you to read, manipulate,
and write groups of records at a time. You manipulate these sets of data using a data
structure called a data source stack.

App Studio Maintain Data Getting Started 43

A data source stack is a simple temporary table. Generally, columns in a data source stack
correspond to data source fields, and rows correspond to records, or path instances, in that
data source. You can also create your own user-defined columns.

The intersection of a row and a column is called a cell and corresponds to an individual field
value. The data source stack itself represents a data source path.

For example, consider the following Maintain Data command:

FOR ALL NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
 WHERE Employee.Emp_ID EQ SelectedEmpID;

This command retrieves Emp_ID and the other root segment fields, as well as the Pay_Date,
Gross, Ded_Code, and Ded_Amt fields from the Employee data source and holds them in a
data source stack named PayStack. Because the command specifies FOR ALL, it retrieves all
of the records at the same time. You do not need to repeat the command in a loop. Because it
specifies WHERE, it retrieves only the records you need, in this case, the payment records for
the currently-selected employee.

You could just as easily limit the retrieval to a sequence of data source records, such as the
first six payment records that satisfy your selection condition

FOR 6 NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
 WHERE Employee.Emp_ID EQ SelectedEmpID;

or even restrict the retrieval to employees in the MIS department earning salaries above a
certain amount:

FOR ALL NEXT Emp_ID Pay_Date Ded_Amt INTO PayStack
 WHERE (Employee.Department EQ 'MIS') AND
 (Employee.Curr_Sal GT 23000);

Which Processes Are Set-based?

You can use set-based processing for the following types of operations:

Selecting records. You can select a group of data source records at one time using the
NEXT command with the FOR prefix. Maintain Data retrieves all of the data source records
that satisfy the conditions you specified in the command and then automatically puts them
into the data source stack that you specified.

Collecting transaction values. You can use forms to display, edit, and enter values for
groups of rows. The rows are retrieved from a data source stack, displayed in the form, and
are placed back into a stack when the user is finished. You can also use the NEXT
command to read values from a transaction file into a stack.

Set-based Processing

44

Writing transactions to the data source. You can include, update, or delete a group of
records at one time using the INCLUDE, UPDATE, REVISE, or DELETE commands with the
FOR prefix. The records come from the data source stack that you specify in the command.

Manipulating stacks. You can copy a set of records from one data source stack to another
and sort the records within a stack.

The following diagram illustrates how these operations function together in a procedure:

The diagram is explained in detail below:

1. The procedure selects several records from the data source and, for each record, copies
the values for fields A, B, and C into the data source stack. It accomplishes this using the
NEXT command.

2. The procedure displays a form on the screen. The form shows multiple instances of fields
A, B, and C. The field values shown on the screen are taken from the stack. This is
accomplished using a form and the Winform Show command.

3. The procedure user views the form and enters and edits data. As the form responds to the
activity of the user, it automatically communicates with the procedure and updates the
stack with the new data.

4. The procedure user clicks a button to exit the form. The button accomplishes this by
triggering the Winform Close command.

5. The procedure writes the values for fields A, B, and C from the stack to the selected
records in the data source. The procedure accomplishes this using the UPDATE command.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 45

How Does Maintain Data Process Data in Sets?

Maintain Data processes data in sets using two features:

The command prefix FOR. When you specify FOR at the beginning of the NEXT, INCLUDE,
UPDATE, REVISE, and DELETE commands, the command works on a group of records,
instead of on just one record.

Stacks. You use a data source stack to hold the data from a group of data source or
transaction records. For example, a stack can hold the set of records that are output from
one command (such as NEXT or Winform) and provide them as input to another command
(such as UPDATE). This enables you to manipulate the data as a group.

Creating and Defining Data Source Stacks: An Overview

Maintain Data makes working with stacks easy by enabling you to create and define a data
source stack dynamically, simply by using it. For example, when you specify a particular stack
as the destination stack for a data source retrieval operation, that stack is defined as
including all of the fields in all of the segments referred to by the command. Consider the
following NEXT command, which retrieves data from the VideoTrk data source into the stack
named VideoTapeStack:

FOR ALL NEXT CustID INTO VideoTapeStack;

Because the command refers to the CustID field in the Cust segment, all of the fields in the
Cust segment (from CustID through Zip) are included as columns in the stack. Every record
retrieved from the data source is written as a row in the stack.

Example: Creating and Populating a Simple Data Source Stack

If you are working with the VideoTrk data source, and you want to create a data source stack
containing the ID and name of all customers whose membership expired after June 24, 1992,
you could issue the following NEXT command:

FOR ALL NEXT CustID INTO CustNames WHERE ExpDate GT 920624;

The command does the following:

1. Selects (NEXT) all VideoTrk records (FOR ALL) that satisfy the membership condition
(WHERE).

2. Copies all of the fields from the Cust segment (referenced by the CustID field) from the
selected data source records into the CustNames stack (INTO).

The resulting CustNames stack looks like this (some intervening columns have been omitted
to save space):

Set-based Processing

46

CustID LastName ... Zip

0925 CRUZ ... 61601

1118 WILSON ... 61601

1423 MONROE ... 61601

2282 MONROE ... 61601

4862 SPIVEY ... 61601

8771 GARCIA ... 61601

8783 GREEN ... 61601

9022 CHANG ... 61601

Creating a Data Source Stack

You create a data source stack:

Implicitly, by specifying it in a NEXT or MATCH command as the destination (INTO) stack, or
by associating it in the HTML canvas.

Forms are introduced in Forms and Event-driven Processing on page 64. The HTML canvas
is used to design and create forms.

Explicitly, by declaring it in an INFER command.

For example, this NEXT command creates the EmpAddress stack:

FOR ALL NEXT StreetNo INTO EmpAddress;

Defining Data Source Columns in a Data Source Stack

When you define a data source stack, you can include any field along a data source path.
Maintain Data defines the data source columns of a stack by performing the following steps:

1. Scanning the procedure to identify all the NEXT, MATCH, and INFER commands that use the
stack as a destination and all the controls that use the stack as a source or destination.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 47

2. Identifying the data source fields that these commands move in or out of the stack:

NEXT commands. Moves the fields in the data source field list and WHERE phrase.

MATCH commands. Moves the fields in the data source field list.

INFER commands. Moves all the fields specified by the command.

3. Identifying the data source path that contains these fields.

4. Defining the stack to include columns corresponding to all the fields in this path.

NEXT commands. Moves the fields in the data source field list and WHERE phrase.

MATCH commands. Moves the fields in the data source field list.

INFER commands. Moves all the fields specified by the command.

You can include any number of segments in a stack, as long as they all come from the same
path. When determining a path, unique segments are interpreted as part of the parent
segment. The path can extend through several data sources that have been joined together.
Maintain Data supports joins that are defined in a Master File. For information about defining
joins in a Master File, see the Describing Data With WebFOCUS Language manual. (Maintain
Data can read from joined data sources, but cannot write to them.)

The highest specified segment is known as the anchor and the lowest specified segment is
known as the target. Maintain Data creates the stack with all of the segments needed to trace
the path from the root segment to the target segment:

It automatically includes all fields from all of the segments in the path that begins with the
anchor and continues to the target.

If the anchor is not the root segment, it automatically includes the key fields from the
anchor's ancestor segments.

Set-based Processing

48

Example: Defining Data Source Columns in a Data Source Stack

In the following source code, a NEXT command refers to a field (Last_Name) in the EmpInfo
segment of the Employee data source, and reads that data into EmpStack. Another NEXT
command refers to a field (Salary) in the PayInfo segment of Employee and also reads that
data into EmpStack.

NEXT Last_Name INTO EmpStack;
.
.
.
FOR ALL NEXT Salary INTO EmpStack;

Based on these two NEXT commands, Maintain Data defines a stack named EmpStack, and
defines it as having columns corresponding to all of the fields in the EmpInfo and PayInfo
segments:

Emp_ID Last_Name ... Ed_Hrs Dat_Inc ... Salary JobCode

071382660 STEVENS ..
.

25.00 82/01/0
1

..

.
$11,000.0
0

A07

071382660 STEVENS ..
.

25.00 81/01/0
1

..

.
$10,000.0
0

A07

Example: Establishing a Path Using Keys and Anchor and Target Segments

The following code populates CustMovies, a data source stack that contains video rental
information for a given customer. The first NEXT command identifies the customer. The second
NEXT command selects a field (TransDate) from the second segment and a field (Title) from
the bottom segment of a path that runs through the joined VideoTrk and Movies data sources:

NEXT CustID WHERE CustID IS '7173';
FOR ALL NEXT TransDate Title INTO CustMovies
 WHERE Category IS 'COMEDY';

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 49

The structure of the joined VideoTrk and Movies data sources looks like this:

In this NEXT command, the TransDat segment is the anchor and the MovInfo segment is the
target. The resulting CustMovies stack contains all the fields needed to define the data source
path from the root segment to the target segment:

The ancestor segment of the anchor, Cust (key field only).

All segments from the anchor through the root: TransDat, Rentals, MovInfo (all fields).

The stack looks like this:

CustID TransDate MovieCode ... Title ... Copies

7173 91/06/18 305PAR ... AIRPLANE ... 2

Set-based Processing

50

CustID TransDate MovieCode ... Title ... Copies

7173 91/06/30 651PAR ... MY LIFE AS A DOG ... 3

Creating Data Source Stack User-Defined Columns

In addition to creating data source stack columns that correspond to data source fields, you
can also create data source stack columns that you define yourself. You can define these
columns in two ways:

Within a procedure. You can create a stack column, as well as user-defined variables, by
issuing a COMPUTE command. You can also use the COMPUTE command to assign values
to stack cells.

Because all Maintain Data variables are local to a procedure, you must redefine variables
in each procedure in which you use them. For user-defined stack columns, you accomplish
this by simply reissuing the original COMPUTE command in each procedure to which you are
passing the stack. You only need to specify the format of the variable. You do not need to
specify its value, which is passed with the stack.

Within the Master File. You can define a virtual field in a Master File by using the DEFINE
attribute. The field is then available in every procedure that accesses the data source. The
virtual field is treated as part of the data source segment in which it is defined, and
Maintain Data automatically creates a corresponding column for it, a virtual column, in
every stack that references that segment.

Virtual fields must be derived, directly or indirectly, from data source values. They cannot
be defined as a constant. The expression assigned to a virtual field in the Master File can
reference fields from other segments in the same data source path as the virtual field.

Unlike other kinds of stack columns, you cannot update a virtual column or field, and you
cannot test it in a WHERE phrase.

Example: Creating a User-Defined Column

Consider a data source stack named Pay that contains information from the Employee data
source. If you want to create a user-defined column named Bonus and set its value to 10% of
the current salary of each employee, you could issue the COMPUTE command to create the
new column, and then issue another COMPUTE to derive the value. You place the second
COMPUTE within a REPEAT loop to run it once for each row in the stack:

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 51

COMPUTE Pay.Bonus/D10.2;
REPEAT Pay.FocCount Row/I4=1;
 COMPUTE Pay(Row).Bonus = Pay(Row).Curr_Sal * .10;
ENDREPEAT Row=Row+1;

Copying Data Into and Out of a Data Source Stack

You can copy data into and out of a data source stack in the following ways:

Between a stack and a data source. You can copy data from a data source into a stack
using the NEXT and MATCH commands. You can copy data in the opposite direction, from a
stack into a data source, using the INCLUDE, UPDATE, and REVISE commands. In addition,
the DELETE command, while not actually copying a stack data, reads a stack to determine
which records to remove from a data source. For more information about these commands,
see Command Reference in the App Studio Maintain Data Language Reference manual.

Between a stack and a form. You can copy data from a stack into a form, and from a form
into a stack, by specifying the stack as the source or destination of the data displayed by
the form. This technique makes it easy for an application user to enter and edit stack data
at a personal computer.

From a transaction file to a stack. You can copy data from a transaction file to a stack
using the NEXT command. For more information about this command, see the App Studio
Maintain Data Language Reference manual.

Between two stacks. You can copy data from one stack to another using the COPY and
COMPUTE commands. For more information about these commands, see Command
Reference in the App Studio Maintain Data Language Reference manual.

You can use any of these commands to copy data by employing the command INTO and FROM
phrases. FROM specifies the command data source (the source stack), and INTO specifies the
command data destination (the destination stack).

Example: Copying Data Between a Data Source Stack and a Data Source

In this NEXT command

FOR ALL NEXT CustID INTO CustStack;

the INTO phrase copies the data (the CustID field and all of the other fields in that segment)
into CustStack. The following UPDATE command

FOR ALL UPDATE ExpDate FROM CustStack;

uses the data from CustStack to update records in the data source.

Set-based Processing

52

Referring to Specific Stack Rows Using an Index

Each stack has an index that enables you to refer to specific rows. For example, by issuing a
NEXT command, you create the CustNames stack to retrieve records from the VideoTrk data
source:

FOR ALL NEXT CustID LastName INTO CustNames
 WHERE ExpDate GT 920624;

The first record retrieved from VideoTrk becomes the first row in the data source stack, the
second record becomes the second row, and so on.

 CustID LastName ... Zip

1 0925 CRUZ ... 61601

2 1118 WILSON ... 61601

3 1423 MONROE ... 61601

4 2282 MONROE ... 61601

5 4862 SPIVEY ... 61601

6 8771 GARCIA ... 61601

7 8783 GREEN ... 61601

8 9022 CHANG ... 61601

You can refer to a row in the stack by using a subscript. The following example refers to the
third row, in which CustID is 1423:

CustNames(3)

You can use any integer value as a subscript: an integer literal (such as 3), an integer field
(such as TransCode), or an expression that resolves to an integer (such as TransCode + 2).

You can even refer to a specific column in a row (that is, to a specific stack cell) by using the
stack name as a qualifier:

CustNames(3).LastName

If you omit the row subscript, the position defaults to the first row. For example,

CustNames.LastName

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 53

is equivalent to

CustNames(1).LastName

Maintain Data provides two system variables associated with each stack. These variables help
you to navigate through a stack and to manipulate single rows and ranges of rows:

FocCount. This value of the variable is always the number of rows currently in the stack
and is set automatically by Maintain Data. This is very helpful when you loop through a
stack, as described in the following section, Looping Through a Stack on page 54.
FocCount is also helpful for checking if a stack is empty:

IF CustNames.FocCount EQ 0 THEN PERFORM NoData;

FocIndex. This variable points to the current row of the stack. When a stack is displayed in
a form, the form sets FocIndex to the row currently selected in the grid or browser. Outside
of a form, the developer sets the value of FocIndex. By changing its value, you can point to
any row you wish. For example, in one function you can increment FocIndex for the Rental
stack:

IF Rental.FocIndex LT Rental.FocCount
 THEN COMPUTE Rental.FocIndex = Rental.FocIndex + 1;

You can then invoke a second function that uses FocIndex to retrieve desired records into
the MovieList stack:

FOR ALL NEXT CustID MovieCode INTO MovieList
 WHERE VideoTrk.CustID EQ Rental(Rental.FocIndex).CustID;

The syntax "stackname(stackname.FocIndex)" is identical to "stackname() ", so you can
code the previous WHERE phrase more simply as follows:

WHERE VideoTrk.CustID EQ Rental().CustID

Looping Through a Stack

The REPEAT command enables you to loop through a stack. You can control the process in
different ways, so that you can loop according to several factors:

The number of times specified by a literal, or by the value of a field or expression.

The number of rows in a stack, by specifying the FocCount variable of the stack.

While an expression is true.

Until an expression is true.

Set-based Processing

54

Until the logic within the loop determines that the loop should be exited.

You can also increment counters as part of the loop.

Example: Using REPEAT to Loop Through a Stack

The following REPEAT command loops through the Pay stack once for each row in the stack
and increments the temporary variable Row by one for each loop:

REPEAT Pay.FocCount Row/I4=1;
 COMPUTE Pay(Row).NewSal = Pay(Row).Curr_Sal * 1.10;
ENDREPEAT Row=Row+1;

Sorting a Stack

You can sort the row of a stack using the STACK SORT command. You can sort the stack by
one or more of its columns and sort each column in ascending or descending order. For
example, the following STACK SORT command sorts the CustNames stack by the LastName
column in ascending order (the default order):

STACK SORT CustNames BY LastName

Editing and Viewing Stack Values

There are multiple ways in which you can edit and/or view the values of a stack.

Forms. You can display a stack in an HTML table or a grid on a form. A grid enables you to
edit the fields of a stack directly on the screen. You cannot edit a stack in an HTML table.

COMPUTE command. You can use the COMPUTE command to assign a value to any of the
cells of a stack. When assigning a value, the COMPUTE keyword is optional, as described
in Command Reference in the App Studio Maintain Data Language Reference manual. For
example, the following command assigns the value 35000 to the cell at the intersection of
row 7 and column NewSal in the Pay stack:

COMPUTE Pay(7).NewSal = 35000;

It is important to note that if you do not specify a row when you assign values to a stack,
Maintain Data defaults to the first row. Thus, if the Pay stack has 15 rows and you issue the
following command

COMPUTE Pay.NewSal = 28000;

the first row receives the value 28000. If you issue this NEXT command

FOR 6 NEXT NewSal INTO Pay;

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 55

the current row of Pay defaults to one, and so the six new values are written to rows one
through six of Pay. Any values originally in the first six rows of Pay will be overwritten.

If you wish to append the new values to Pay, that is, to add them as new rows 16 through 21,
you would issue this NEXT command, which specifies the starting row:

FOR 6 NEXT NewSal INTO Pay(16);

You can accomplish the same thing without needing to know the number of the last row by of
the stack using the FocCount variable:

FOR 6 NEXT NewSal INTO Pay(Pay.FocCount+1);

If you want to discard the original contents of Pay and substitute the new values, it is best to
clear the stack before writing to it using the following command:

STACK CLEAR Pay;
FOR 6 NEXT NewSal INTO Pay;

Default Data Source Stack: The Current Area

For all data source fields referenced by a Maintain Data procedure, Maintain Data creates a
corresponding column in the default data source stack known as the Current Area.

The Current Area is always present and is global to the procedure. It has one row, and
functions as a kind of data source buffer. Each data source field, that is, each field described
in a Master File that is accessed by a Maintain Data procedure, has a corresponding column in
the Current Area. When a data source command assigns a value, either to a field using
INCLUDE, UPDATE, or REVISE, or from a field to a stack using NEXT or MATCH, Maintain Data
automatically assigns that same value to the corresponding column in the single row of the
Current Area. If a set-based data source command writes multiple values to or from a stack
column, the last value that the command writes is the one that is retained in the Current Area.

Note: Stacks are a superior way of manipulating data source values. Since the Current Area is
a buffer, it does not function as intuitively as stacks do. It is recommended that you use
stacks instead of the Current Area to manipulate data source values.

For example, if you write 15 values of NewSal to the Pay stack, the values will also be written
to the NewSal column in the Current Area; since the Current Area has only one row, its value
will be the fifteenth (that is, the last) value written to the Pay stack.

The Current Area is the default stack for all FROM and INTO phrases in Maintain Data
commands. If you do not specify a FROM stack, the values come from the single row in the
Current Area. If you do not specify an INTO stack, the values are written to the single row of
the Current Area, so that only the last value written remains.

Set-based Processing

56

The standard way of referring to a stack column is by qualifying it with the stack name and a
period:

stackname.columnname

Because the Current Area is the default stack, you can explicitly reference its columns without
the stack name, by prefixing the column name with a period:

.columnname

Within the context of a WHERE phrase, an unqualified name refers to a data source field (in a
NEXT command) or a stack column (in a COPY command). To refer to a Current Area column in
a WHERE phrase you should reference it explicitly by qualifying it with a period. Outside of a
WHERE phrase it is not necessary to prefix the name of a Current Area column with a period,
as unqualified field names will default to the corresponding column in the Current Area.

For example, the following NEXT command compares Emp_ID values taken from the Employee
data source with the Emp_ID value in the Current Area:

FOR ALL NEXT Emp_ID Pay_Date Ded_Code INTO PayStack
 WHERE Employee.Emp_ID EQ .Emp_ID;

If the Current Area contains columns for fields with the same field name but located in
different segments or data sources, you can distinguish between the columns by qualifying
each one with the name of the Master File and/or segment in which the field is located:

masterfile_name.segment_name.column_name

If a user-defined variable and a data source field have the same name, you can qualify the
name of the Current Area column of the data source field with its Master File and/or segment
name; an unqualified reference will refer to the user-defined variable.

Maximizing Data Source Stack Performance

When you use data source stacks, there are several things you can do to optimize
performance:

Filter out unnecessary rows. When you read records into a stack, you can prevent the
stack from growing unnecessarily large by using the WHERE phrase to filter out unneeded
rows.

Clear stacks when done with data. Maintain Data automatically releases a stack memory
at the end of a procedure, but if in the middle of a procedure you no longer need the data
stored in a stack, you can clear it immediately by issuing the STACK CLEAR command.
Clearing the data frees the stack memory for use elsewhere.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 57

Do not reuse a stack for an unrelated purpose. When you specify a stack as a data source
or destination in certain contexts (in the NEXT, MATCH, and INFER commands, and in the
HTML canvas for controls), you define the columns that the stack will contain. If you use
the same stack for two unrelated purposes, it will be created with the columns needed for
both, making it unnecessarily wide.

Controlling the Flow of a Procedure

Maintain Data provides many different ways of controlling the flow of execution within a
procedure. You can:

Nest a block of code. In commands in which you can nest another command, such as in an
IF command, you can nest an entire block of commands in place of a single one by defining
the block using the BEGIN command.

Loop through a block of code a set number of times, while a condition remains true, or until
it becomes true, using the REPEAT command.

Branch unconditionally to a block of code called a Maintain Data function. You define the
function using the CASE command, and can invoke it in a variety of ways. When the
function terminates, it returns control to the command following function invocation.

Alternatively, you can branch to a function, but not return upon termination, by invoking the
function using the GOTO command.

Branch conditionally using the IF command. If the expression you specify in the IF command
is true, the command executes a PERFORM or GOTO command nested in the THEN phrase,
which branches to a Maintain Data function.

Alternatively, you can nest a different command, such as a BEGIN command defining a
block of code, to be conditionally run by the IF command.

Trigger a task in response to a user action. When users perform an action in a form at run
time, the action triggers the task, a function, or URL link, that you have specified.

For more information on the commands listed here, see Command Reference in the App Studio
Maintain Data Language Reference manual.

Executing Other Maintain Data Procedures

You can call one Maintain Data procedure from another with the CALL command. Maintain
Data procedure here means any procedure of Maintain Data language commands. CALL
simplifies the process of modularizing an application. Software designed as a group of related
modules tends to be easier to debug, easier to maintain, and lends itself to being reused by
other applications, all of which increase your productivity.

Controlling the Flow of a Procedure

58

CALL also makes it easy to partition an application, deploying each type of logic on the
platform on which it will run most effectively.

The following diagram illustrates how to describe the relationship between called and calling
procedures. It describes a sequence of five procedures from the perspective of the middle
procedure, which is named C.

Note: A root procedure is also called the starting procedure.

Calling a Maintain Data Procedure on a Different Server

If parent and child Maintain Data procedures reside on different servers, you identify the
location of the child procedure by supplying the AT server phrase in the CALL command.

Example: Calling the EmpUpdat Procedure on a Different Server

Consider the EmpUpdat procedure:

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO EmpStack;
.
.
.
CALL NewClass;
.
.
.
END

This calls the NewClass procedure on the EducServ Reporting Server:

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 59

MAINTAIN
.
.
.
END

In this example, EmpUpdat is the parent procedure and NewClass is the child procedure. When
the child procedure, and any procedures that it has invoked, have finished executing, control
returns to the parent.

Passing Variables Between Procedures

All user variables (both stacks and simple, or scalar variables) are global to a function or
procedure, but not global to the application. In other words, to protect them from unintended
changes in other parts of an application, you cannot directly reference a variable outside of the
procedure in which it is found (with the exception of the FocError transaction variable).
However, you can access the variable data in other procedures, simply by passing it as an
argument from one procedure to another.

To pass variables as arguments, you only need to name them in the CALL command, and then
again in the corresponding MAINTAIN command, using the FROM phrase for input arguments
and INTO phrase for output arguments. Some variable attributes must match in the CALL and
MAINTAIN commands:

Number. The number of arguments in the parent and child procedures must be identical.

Sequence. The order in which you name stacks and simple variables must be identical in
the CALL and corresponding MAINTAIN commands.

Data type. Stack columns and simple variables must have the same data type (for
example, integer) in both the parent and child procedures.

Stack column names. The names of stack columns need to match. If a column has
different names in the parent and child procedures, it is not passed.

Other attributes do not need to match:

Stack and scalar variable names. The names of stacks and simple variables specified in
the two commands do not need to match.

Other data attributes. All other data attributes, such as length and precision, do not need
to match.

Simple variables. If you pass an individual stack cell, you must receive it as a simple
variable, not as a stack cell.

Executing Other Maintain Data Procedures

60

After you have passed a variable to a child procedure, you need to define it in that procedure.
How you define it depends upon the type of variable:

User-defined columns and fields. You must redefine each user-defined variable using a
DECLARE or COMPUTE command. You only need to specify the variable format, not its
value. For example, the following DECLARE command redefines the Counter field and the
FullName column:

DECLARE Counter/A20;
 EmpStack.FullName/A15;

Data source and virtual stack columns. You can define the data source columns and
virtual columns of the stack in one of two ways. You can define them implicitly, by referring
to the stack columns in a data source command, or explicitly, by referring to them using the
INFER command. For example:

INFER Emp_ID Pay_Date INTO EmpStack;

The INFER command declares data source fields and the stack with which they are
associated. You can specify one field for each segment you want in the stack or simply one
field each from the anchor and target segments of a path you want in the stack.

While INFER reestablishes the definition of the stack, it does not retrieve any records from
the data source.

After a variable has been defined in the child procedure, its data becomes available. If you
refer to stack cells that were not assigned values in the parent procedure, they are assigned
default values, such as spaces or zeros (0), in the child procedure, and a message is
displayed warning that they have not been explicitly assigned any values.

When the child procedure returns control back to the parent procedure, the values of stacks
and simple variables specified as output arguments are passed back to the parent. The values
of stacks and simple variables specified only as input arguments are not passed back.

Example: Passing Data Between Maintain Data Procedures

This procedure

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 61

MAINTAIN FILE Employee
FOR ALL NEXT Emp_ID INTO EmpStack;
.
.
.
CALL NewClass FROM EmpStack CourseStack INTO CourseStack;
.
.
.
END

calls the NEWCLASS procedure:

MAINTAIN FROM StudentStack CourseStack INTO CourseStack
.
.
.
END

EmpStack and CourseStack in the parent procedure correspond to StudentStack and
CourseStack in the child procedure.

Accessing Data Sources in the Child Procedure

If a child procedure accesses a data source, whether retrieving or writing records, you must
specify the data source in the MAINTAIN command. This is done the same way as for a stand-
alone procedure. For example, the procedure below specifies the Employee and EducFile data
sources:

MAINTAIN FILES Employee AND EducFile FROM StuStk INTO CoursStk
.
.
.
END

Data Source Position in Child Procedures

Each Maintain Data procedure tracks its own position in the data source. When you first call a
procedure, Maintain Data positions you at the beginning of each segment in each data source
accessed within that procedure. After navigating through a data source, you can reposition to
the beginning of a segment by issuing the REPOSITION command. The data source positions
are independent of the positions established in other procedures.

When a child procedure returns control to its parent, by default it clears its data source
positions. You can specify that it retain its positions for future calls by using the KEEP option,
as described in Optimizing Performance: Data Continuity and Memory Management on page
63.

Executing Other Maintain Data Procedures

62

Advantages of Modularizing Source Code Using CALL

Modularizing source code into several procedures has many advantages. One benefit is that
you can use multiple procedures, run using the CALL command, to share common source code
among many developers, speeding up both development and maintenance time. For example,
a generalized error message display procedure could be used by all App Studio Maintain Data
developers. After passing a message to the generalized procedure, the procedure would
handle message display. The developers do not need to worry about how to display the
message, and the error messages will always look consistent to end users.

Another advantage of modular design is that you can remove infrequently-run source code from
a procedure and move it into its own procedure. This reduces the size of the original
procedure, simplifying its logic, making maintenance easier, and using less memory if the new
procedure is not called.

Optimizing Performance: Data Continuity and Memory Management

By default, when you terminate a child procedure, Maintain Data clears its data from memory
to save space. You can optimize your application performance by specifying, each time you
terminate a child procedure, how you want Maintain Data to handle the procedure data. You
have two options, based on how often you will call a given procedure over the course of an
application. If you will call the procedure:

Frequently, use the KEEP option to make the procedure run faster by retaining its data
between calls.

This option provides data continuity. The procedure data carries over from the end of one
invocation to the beginning of the next. The next time you call the procedure, its variables
and data source position pointers start out with the same values that they held when the
procedure was last terminated. You can use these values or reinitialize them using the
DECLARE (or COMPUTE) and REPOSITION commands.

Of course, variables passed by the parent procedure are not affected by data continuity
since the child procedure receives them directly from the parent procedure at the beginning
of each call.

KEEP affects transaction integrity in the following way. The KEEP option does not issue an
implied COMMIT command at the end of a child procedure. When a child procedure with an
open logical transaction returns to its parent procedure and specifies KEEP, the transaction
continues into the parent.

Rarely, use the RESET option to reduce memory consumption by freeing the procedure data
at the end of each call.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 63

This option does not provide data continuity. All of the procedure variables and data source
position pointers are automatically initialized at the beginning of each procedure.

RESET affects transaction integrity in the following way. The RESET option issues an
implied COMMIT command at the end of a child procedure. When a child procedure with an
open logical transaction returns to its parent procedure using RESET, the transaction is
closed at the end of the child procedure.

You can specify how a procedure will handle its data in memory by terminating it with the GOTO
END command qualified with the appropriate memory-management phrase. The syntax is

GOTO END [KEEP|RESET];

where:

KEEP

Terminates the procedure, but keeps its data, the values of its variables and data source
position pointers, in memory. It remains in memory through the next invocation, or (if it is
not called again) until the application terminates. The procedure does not issue an implied
COMMIT command to close an open logical transaction.

RESET

Terminates the procedure, clears its data from memory, and issues an implied COMMIT
command to close an open logical transaction. RESET is the default value.

You can use both options in the same procedure. For example, when you are ready to end a
child procedure, you could evaluate what logic the procedure will need to perform when it is
next called and then branch accordingly either to keep data in memory, saving time and
providing data continuity, or else to clear data from memory to conserve space.

Forms and Event-driven Processing

Forms are the visual interface to an App Studio Maintain Data application, giving it a dynamic
and attractive face while enabling you to make the application flexible and to place its power at
the fingertips of the application end users.

You can design forms that enable end users to:

Enter and edit data.

Select options.

Perform business logic, such as searching a data source for a customer order.

Send email.

Forms and Event-driven Processing

64

Navigate the World Wide Web.

Read application-specific help information.

Control the flow of an application using an event-driven paradigm.

You develop these forms and the associated logic using the Form Editor. This is a sample
form:

Forms are event-driven, and enable:

Event-driven processing. Forms are responsive to the needs of users because they
recognize user activity on the screen, that is, different types of screen events. For example,
a form recognizes what the user does on the screen with the keyboard and mouse. It
knows when users click a button or change a field value.

Forms also enable you to assign tasks to these events. Each time a specified event occurs,
Maintain Data automatically triggers the corresponding task. If you use events to trigger the
application business logic, you can give the user more freedom, for example, over which
editing tasks to perform, and in which order. You can also give the user access to more
functionality, and more types of data, on a single screen. Event-driven processing gives the
user more flexibility over the application, even as it gives the application more control over
the user interface.

Event-driven development. App Studio Maintain Data provides you with a simple way of
developing event-driven applications, event-driven development. Because much of an
application flow can be controlled from forms, you can develop the application as you paint
its forms. You can first design the visual layout, then create controls, and finally code
tasks, all from the HTML canvas. App Studio Maintain Data also offers the Language
Wizard which generates code for you, making it faster and easier to develop effective
interfaces and powerful applications.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 65

For an introduction to using forms and developing event-driven applications, see How to Use
Forms on page 66, Designing Event-driven Applications on page 67, and Creating Event-
driven Applications on page 67.

How to Use Forms

Forms are deployment-independent. You design a form to meet the needs of your application.
App Studio Maintain Data automatically implements the form as a webpage. This enables you
to focus on logic, and leave implementation details to App Studio Maintain Data.

Forms have standard form features, including:

A title bar that identifies the form.

Scroll bars that enable you to move the contents of a control vertically and horizontally if
they extend beyond the control border.

Forms are displayed one at a time in one web browser session.

You can transfer control from one form to another, from a form to another Maintain Data
procedure or to an App Studio procedure, and from a form to any Internet resource, such as an
email client, a webpage, or an FTP server.

Designing a Form

Forms offer a diverse set of ways by which an application end user can select options, invoke
procedures, display and edit fields, and get helpful information. For example, if you want the
user to select an option or procedure, you can use any of the following controls:

Buttons. You can specify a function to be performed when the end user clicks a button or
image. Common examples are Done and Cancel buttons.

Radio buttons. The end user can select one of a mutually exclusive group of options. For
example, an employee could identify his or her department.

Check boxes. The end user can select or deselect a single option or characteristic. For
example, an applicant could indicate if this is the first time that he or she has applied.

Combo boxes and list boxes. The end user can select one or more options from a dynamic
list of choices.

Menus. The end user can select an option from a drop-down menu or submenu.

If you want to display or edit data, you can use these controls:

Edit boxes. You can use this control to edit a single value.

Forms and Event-driven Processing

66

Multi-line edit boxes. You can use this control to edit a long value wrapping onto multiple
lines.

HTML tables. You can use this control to view a data source stack.

Grids. You can use this control to edit and view a data source stack.

Designing Event-driven Applications

The flow of control in conventional processing is mostly pre-determined, that is, the
programmer determines the few paths that the user will be able to take through the procedure.

To make your application user interface more responsive to the user, App Studio Maintain Data
offers event-driven processing. Each time that an event occurs, it invokes, or triggers, the
assigned task. In App Studio Maintain Data, the event is something the application end user
does in a form, and the task is a function or a URL. For example, you might create a button
that, when clicked by a user, triggers a task that reads a data source and displays the data in
the form.

Creating Event-driven Applications

Developing a procedure by writing out sequential lines of source code may be sufficient for
conventional linear processing, but event-driven processing demands event-driven
development. Developing an application in this way lets you build much of the application logic
around the user interface. In effect, you develop the application as you develop the interface in
the HTML canvas. For example, you could start by creating a form, creating a control, and then
coding a task for one of the control events. App Studio Maintain Data also provides you with a
number of automated tools for developing applications. For example, you can use the
Language Wizard to generate source code for various operations such as retrieving and
updating data.

Reading From a Data Source

Most applications need to read data from a data source. The most common method is to read
data from a data source into a data source stack. Before reading, you first need to select the
record in which the data resides. There are five ways of selecting records:

By field value for an entire set of records. Use the NEXT command. The WHERE phrase
enables you to select by value, and the FOR ALL phrase selects the entire set of records
that satisfy the WHERE selection condition. The basic syntax for this is:

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 67

FOR ALL NEXT fields INTO stack WHERE selection_condition;

By field value for a sequence (subset) of records. Use the NEXT command. This is similar
to the technique for a set of records, except that it employs the FOR n phrase, selecting, at
the current position in the data source, the first n records that satisfy the WHERE condition.
The basic syntax for this is:

FOR n NEXT fields INTO stack WHERE selection_condition;

By field value, one segment at a time, one record at a time. Use the MATCH command.
The basic syntax for this is:

MATCH fields [FROM stack] [INTO stack];

Sequentially for a sequence (subset) of records. Use the NEXT command. This technique
employs the FOR n phrase to select the next n records. The basic syntax for this is:

FOR n NEXT fields INTO stack;

Sequentially, one segment instance at a time, one record at a time. Use the NEXT
command. The basic syntax for this is:

NEXT fields [INTO stack];

You can read from individual data sources, and from those that have been joined. Maintain
Data supports joins that are defined in a Master File. For information about defining joins in a
Master File, see the Describing Data With WebFOCUS Language manual. Maintain Data can
read from joined data sources, but cannot write to them.

You can evaluate the success of a command that reads from a data source by testing the
FocError system variable, as described in Evaluating the Success of a Simple Data Source
Command on page 70.

The NEXT and MATCH commands are described in detail in Command Reference in the App
Studio Maintain Data Language Reference manual.

Repositioning Your Location in a Data Source

Each time you issue a NEXT command, Maintain Data begins searching for records from the
current position in the data source. For example, if your first data source operation retrieved a
set of records

FOR ALL NEXT CustID INTO SmokeStack
 WHERE ProdName EQ 'VCR DUST COVER';

Reading From a Data Source

68

then Maintain Data will have searched sequentially through the entire data source, so the
current position marker will now point to the end of the data source. If you then issue another
NEXT command

FOR ALL NEXT LastName FirstName INTO CandyStack
 WHERE ProdName EQ 'CANDY';

Maintain Data searches from the current position to the end of the data source. Since the
current position is the end of the data source, no records are retrieved.

When you want a NEXT command to search through the entire data source (as is often the
case when you wish to retrieve a set of records) you should first issue the REPOSITION
command to move the current position marker to the beginning of the data source.

Example: Repositioning to the Beginning of the Data Source

The following REPOSITION command specifies the CustID field in the root segment, and so
moves the current position marker for the root segment chain and all of its descendant chains
back to the beginning of the chain (in effect, back to the beginning of the data source):

REPOSITION CustID;
FOR ALL NEXT LastName FirstName INTO CandyStack
 WHERE ProdName EQ 'CANDY';

Writing to a Data Source

Writing to a data source is the heart of transaction processing applications. Maintain Data
provides the following commands to write to a data source:

INCLUDE. Adds the specified new segment instances to a data source.

UPDATE. Updates the specified fields in a data source.

REVISE. Adds new segment instances and updates the specified fields in existing segment
instances.

DELETE. Removes the specified segment instances from a data source.

These commands are described in detail in Command Reference in the App Studio Maintain
Data Language Reference manual.

Maintain Data requires that data sources to which it writes have unique keys.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 69

Evaluating the Success of a Simple Data Source Command

When you issue a command that reads or writes to a data source, you should determine if the
command was successful. Reasons for a data source command not being successful include
attempting to insert a record that already exists, to update a record that does not exist, to
delete a record that does not exist, to read a record that does not exist, and being interrupted
by a system failure.

When you issue a command that reads or writes to a data source, if the command is:

Successful, Maintain Data automatically sets the transaction variable FocError to 0 (zero),
and writes to the data source.

Unsuccessful, Maintain Data sets FocError to a non-zero value, and does not write to the
data source.

Example: Evaluating the Success of an UPDATE Command

The following function updates the VideoTrk data source for new video rentals. If the UPDATE
command is unsuccessful, the application invokes a function that displays a message to the
user. The line that evaluates the success of the command is highlighted below:

CASE UpdateCustOrder
 UPDATE ReturnDate Fee FROM RentalStack;
 IF FocError NE 0 THEN PERFORM ErrorMessage;
ENDCASE

Evaluating the Success of a Stack-based Write Command

When you write a set of stack rows to a data source, if you specify more rows than there are
matching data source records, this does not invalidate the write operation. Maintain Data
attempts to write all the matching rows to the data source. For example, the following UPDATE
command specifies 15 rows, but there are only 12 matching rows. All 12 are written to the
data source.

FOR 15 UPDATE Curr_Sal FROM NewSalaries;

When you write a set of stack rows to a data source, if one row fails, the following happens:

The rows preceding the failed row are written to the data source.

The rows following the failed row are ignored.

FocError is set to a non-zero value, signaling an error.

FocErrorRow is set to the number of the failed row.

Writing to a Data Source

70

Data source logic errors include attempting to insert an existing record, to update a
nonexistent record, and to delete a nonexistent record.

To determine if an entire stack was successfully written to the data source, test FocError
immediately following the data source command. If FocError is not zero (0), you can determine
which row caused the problem by testing FocErrorRow; you can then reprocess that row. If you
will be passing control to a different procedure and reprocessing the row there, consider first
setting the stack's FocIndex variable to the value of FocErrorRow in the current procedure, so
that after you pass control the stack is already positioned at the problem row.

If you do not wish to take advantage of this flexibility, and instead prefer to invalidate all the
rows of the stack if any of them are unsuccessful, you can bracket the data source command
in a logical transaction that you can then roll back. Logical transactions are discussed in
Transaction Processing on page 71.

Row failure when committing to a data source. If a stack-based write command is part of a
logical transaction, and the write command succeeds when it is issued but fails when the
application tries to commit the transaction, Maintain Data rolls back all of the write command
rows, along with the rest of the transaction. For example, a write command might fail at
commit time because another user has already changed one of the records to which the
command is writing. Transaction processing is described in Transaction Processing on page
71.

Example: Evaluating a Stack-based Update Command

The NewSalaries stack has 45 rows. The following command updates the Employee data
source for all the rows in NewSalaries:

FOR ALL UPDATE Curr_Sal FROM NewSalaries;

If there is no data source record that matches the thirtieth row of NewSalaries, Maintain Data
updates the data source records matching the first 29 rows and ignores records that match
rows 30 and higher.

Transaction Processing

You are familiar with individual data source operations that insert, update, or delete data
source segment instances. However, most applications are concerned with transactions, such
as transferring funds or fulfilling a sales order, that each require several data source
operations. These data source operations may access several data sources, and may be
issued from several procedures. Such a collection of data source operations is called a logical
transaction (and is also known as a logical unit of work.)

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 71

The advantage of describing a group of related data source commands as one logical
transaction is that the transaction is written to the data source only if all of its component
commands are successfully written to the data source. Transaction integrity is an
uncompromising proposition: if even one part of the transaction fails when you try to write it (by
issuing the COMMIT command), Maintain Data automatically rolls back the entire transaction,
leaving the data source unchanged.

Transaction integrity also ensures that when several users share access to the same data
source, concurrent transactions run as if they were isolated from each other. The changes
caused by a transaction in a data source are concealed from all other transactions until that
transaction is committed. This prevents each transaction from being exposed to interim
inconsistent images of the data source, and so protects the data from corruption.

There are many strategies for managing concurrent data source access. No matter which type
of data source you use, Maintain Data respects the DBMS concurrency strategy and lets it
coordinate access to its own data sources.

Transaction processing is described in greater detail in the App Studio Maintain Data Language
Reference manual.

Example: Logical Transactions in a Bank

A banking application would define a transfer of funds from a checking account to a savings
account as one logical transaction comprising two update operations:

Subtracting the funds from the source account (UPDATE Checking FROM SourceAccts).

Adding the funds to the target account (UPDATE Savings FROM TargetAccts).

If the application had not been able to subtract the funds from the checking account, because
someone had cleared a check against that account a few moments earlier and depleted its
funds, but the application had added the funds to the savings account, the bank accounts
would become unbalanced.

The two update commands (subtracting and adding funds) must be described as parts of a
single logical transaction, so that the subtraction and addition updates are not written to the
data source independently of each other.

Classes and Objects

Most application development is modular, the developer creates complex systems comprised
of smaller parts. In conventional development, these modules are processes (such as
procedures). In object-oriented development, the modules are models of real-world objects
(such as a customer or a shipping order). Each object encapsulates both data and processes.

Classes and Objects

72

For example, if you are developing an order fulfillment system for a mail-order clothing
business, the objects might include customers, orders, and stock items. The customer data
might include the ID code, phone number, and order history. the customer processes might
include a function that adds the customer to a new mailing list, a function that updates the
customer contact information, and a function that places an order for the customer.

Object-oriented development, because it models the real-world objects with which your
enterprise deals, and encourages you to reuse application logic in a variety of ways, is a more
efficient way of developing applications. App Studio Maintain Data enables you to create
applications using object-oriented development, conventional development, or a hybrid of these
two methods, providing you with a flexible path.

What Are Classes and Objects?

Most applications need many objects of the same type. For example, if your business has 500
customers, you need one object to represent each customer. No one would want to design a
customer object 500 times. Clearly, you need a template that defines all customer objects, so
that you can design the template once, and use it often, each time you create a new customer
object to represent a new customer.

The template of an object is called its class. Each object is an instance of a class. The class
defines what type of object it is. When you create a class, it becomes a new data type, one
which you can use to define an object, in the same way that you can use a built-in data type
like integer or alphanumeric to define a simple variable like a customer code.

You define a class by describing its properties. Classes have two kinds of properties:

Adding the funds to the target account (UPDATE Savings FROM TargetAccts).

Data, in the form of the class variables. Because these variables exist only as members of
the class, they are called member variables. In some object-oriented development
environments, these are also known as object attributes or instance variables.

Processes, implemented as functions. Because these functions exist only as members of
the class, they are called member functions. In some object-oriented development
environments, these are also known as methods.

If you want to create a new class that is a special case of an existing class, you could derive it
from that existing class. For example, in a human resources application, a class called
Manager could be considered a special case of a more general class called Employee. All
managers are employees, and possess all employee attributes, plus some additional
attributes unique to managers. The Manager class is derived from the Employee class, so
Manager is a subclass of Employee, and Employee is the superclass of Manager.

3. App Studio Maintain Data Concepts

App Studio Maintain Data Getting Started 73

A subclass inherits all of its superclass properties, that is, it inherits all of the superclass
member variables and member functions. When you define a subclass you can choose to
override some of the inherited member functions, meaning that you can recode them to suit
the ways in which the subclass differs from the superclass. You can also add new member
functions and member variables that are unique to the subclass.

Classes and objects are described in greater detail in the App Studio Maintain Data Language
Reference manual.

Classes and Objects

74

Chapter4 Creating an Update Application With
Update Assist

Update Assist provides a simple way to create web-based data source file browsers and
data maintenance applications in just a few minutes without having to write code.

In this chapter:

Starting Update Assist

Update Assist: Segment & Field Options

Update Assist: Navigation Options

About Your Update Assist Application

Calling an Update Assist Procedure From an App Studio Report

Usage Notes

Starting Update Assist

You can create an application with Update Assist that adds records, updates records, or
deletes records against any data source for which you have read/write access. Data navigation
and input validation are automatic. This means you get an update application with no need to
design forms, or to write navigation, validation, or update procedures.

To start using Update Assist, do the following:

1. In a Domain folder, create a new HTML page, using the HTML/Document wizard.

2. In the Requests & Data Sources panel, from the New drop-down list, select Embedded
Request and then select New Maintain Data with Update Assist or select External Request
and then select Maintain Data: New with Update Assist.

3. Select the Master File from the Open File dialog box.

Note:

If you are using a single segment Master File, Update Assist consists of two steps.

If you are using a multi-segment Master File, Update Assist consists of three steps. The
additional dialog box asks you to first select the lowest segment in the hierarchy that you
want to update.

App Studio Maintain Data Getting Started 75

The Update Assist dialog boxes correspond to the steps for generating Update Assist
applications.

Update Assist: Segment & Field Options

In the Segment & Field Options window of Update Assist, you select the segment and fields
you want to update.

This window contains the following fields and options:

Update Segment Options

Contains the segment you selected. In order to enable changes to any of the fields in a
segment, select the Add, Update, or Delete option.

Field View Options

Contains the fields in the segment that you selected in the Update Segment Options
section. Once you have enabled changes to the segment as a whole, you can set change
options for each individual field in the segment.

Update Assist: Segment & Field Options

76

Display Name

Is how the field name is displayed on the form.

Name

Is the name of the data source field.

Visible

Determines whether the field is visible to the user.

Changeable

Determines whether the user can change the field. This option is available only if Add or
Update was selected in the Update Segment Options section.

Note: A key field cannot be changed.

Tip: You can select multiple fields and then click once to change the Visible or Changeable
settings.

Validation

Applies a validation technique which verifies the value a user enters in the field. This
option is available only if Changeable is set to Yes.

The options for Validation are:

Automatic. The default validation option, validates the user entry against the field format
defined in the Master File. This automatically supports validation for Alphanumeric,
Numeric (including Floating Point and Integer), and Date formats. The validation is
performed using client-side JavaScript and does not require the server to validate the data.

Range. Allows you to define a numeric range between which data is valid for the field. See
How to Use a Range to Validate a Field on page 79. This option is best used for numeric
fields.

Static List. Allows you to supply a list of valid values from which the user selects at run
time. When Static List is selected, the Field Validation - List dialog box opens. To retrieve a
list of all values currently in the database, click the Get Values button. You can edit this
supplied list. For details, see How to Use a Static List to Validate a Field on page 80.

Dynamic List. Allows you to supply a list of valid values for the field that are retrieved from
a specified data source at run time. When Dynamic List is selected, you are prompted for
the Master File and field from which to retrieve values. For details, see How to Use a
Dynamic List to Validate a Field on page 81.

None. Does not perform a validation.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 77

Required Field. Specifies that the user must supply a value for the field.

Procedure: How to Rename a Segment or a Field

You can easily rename a segment or field as it is displayed to the user (this is called the
Display Name).

1. Right-click the segment or field.

2. Click Rename.

3. Type the new name and press Enter.

Procedure: How to Resort Fields in the Segment & Field Options Window

You can change the order of the fields as they appear in the window.

1. In the upper-right corner of the Field View Options pane, click the arrow to the right of the

alphabetical sort button .

2. To sort fields by:

Display name, select Display name from the drop-down menu.

Original name, select Name from the drop-down menu.

The order in which they appear in the Master File, select Original order from the drop-
down menu.

Note: This does not affect the order of the fields in your application. In the application, the
fields are sorted according to their order in the Master File.

Update Assist: Segment & Field Options

78

Procedure: How to Use a Range to Validate a Field

When you choose the Range option to validate a field, Update Assist opens the Field Validation
- Range dialog box. You use this option with numeric fields to specify a range of values for any
information the user enters. The Field Validation - Range dialog box is shown in the following
image.

1. Enter a From value to indicate the beginning of the acceptable range of values.

2. Enter a To value to indicate the end of the acceptable range of values.

3. Click OK.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 79

Procedure: How to Use a Static List to Validate a Field

When you choose the Static List option to validate a field, the Field Validation - List dialog box
opens. Use this option to specify a static list of values that the user can select from a pull-
down list. The Field Validation - List dialog box is shown in the following image.

1. To enter new acceptable field values, click the Add new item button , type the text for
the value, and press Enter.

2. To edit an existing value, select it, make any changes, and press Enter.

3. To delete an existing value, select it, and click the Delete selected items button .

4. To change the order of the values, use the move item up in the list and the move item

down in the list buttons .

5. When you are done, click OK.

Update Assist: Segment & Field Options

80

Note: When populating a Static list, make sure you scan the data source for all possible
values and enter them into the list. If you leave a value off the list that is in a current record
and that record is selected for update, the value for the bound column will change to the first
item on the Static List.

Tip: If a field is not required and you want to give your user the option to leave it blank, put an
empty entry in as the first item in your Static list.

Procedure: How to Use a Dynamic List to Validate a Field

When you choose the Dynamic List option to validate a field, you specify a field in the data
source that contains the possible values. At run time, a list of values is retrieved from that
data source and the user can then select one of these values from a drop-down list.

The real power of Dynamic Lists is that you can add items to the lists in your Update Assist
applications without having to make changes to the form code of the application. Static lists
require you to edit the forms in your Maintain Data application using the HTML canvas. For
example, if you choose to use a flat file as the source of items in your lists, you can simply
add items to the flat file or export a new flat file from your data source to change the list. You
do not need to change a line of application code.

1. In the Open dialog box, select a Master File for the data source containing the values for
the field and click OK. You can use any data source type supported by App Studio.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 81

2. The Field Validation - File dialog box opens, as shown in the following image. Select the
name of the field in the data source that contains the values you want to validate against
and click OK. (If you want to select a different data source, click Browse.)

Update Assist: Segment & Field Options

82

Update Assist: Navigation Options

The Navigation Options window of Update Assist is where you determine what the user
interface for your Update Assist application will look like. The following image shows the
Navigation Options window.

This window contains the following fields and options:

Prompt user to enter database security information (DBA)

Generates a page prompting the user to enter a password to access the data in the data
source. Use this option if data source security is enabled.

The application will store the password in a cookie, so the user will only be prompted for it
once.

Key values selected via tree

Generates a form in which the user selects records using a hierarchical tree control.

Key values selected via combobox

Generates a form in which the user selects records using a combobox.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 83

Key values entered by user

Generates a form in which the user selects records by entering key values.

Note: This requires that the user knows the actual values for the key values.

No key values required

Generates a Maintain Data procedure to be called by another procedure (usually an App
Studio report) with the appropriate values to fill out the screen. To see how to create the
App Studio report that calls this type of Update Assist application, see Calling an Update
Assist Procedure From an App Studio Report on page 88.

Preview

Displays the selected navigation, theme, and fields.

About Your Update Assist Application

This section describes how to run your application and how Update Assist applications work.

Once you click Finish in the final Update Assist window, the dialog box shown in the following
image opens. Click Yes to start Maintain Data right after the page is loaded.

If the Maintain Data file contains Winforms, the dialog box shown in the following image opens.
Click Yes to create a multi-page control.

About Your Update Assist Application

84

Maintain Data generates the files needed for your application, and runs the application, if
specified.

Reference: Working With Empty or New Data Sources

In tree navigation. If you select the Add option for any data segments that do not contain
data, the Tree will display a period (.) for the null segment. You can right-click on the period
(.) to enter new data for that segment.

In combo box navigation. For any data segments that do not contain data, the combo
boxes display a [New] command. This option enables you to enter new records.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 85

Calendar Control for Date-Formatted Fields

A calendar icon appears next to changeable date-formatted fields. When a user clicks the
calendar icon, a calendar appears, as shown in the following image. Any date selected on this
calendar is entered into the date field. Users can also type dates into the date field manually.

Date-Stamping Fields

Many DBMSs allow you to create a time stamp field. This automatically fills the field with the
current date and/or time and saves the user having to do it. There are many reasons at an
application level for doing this. The most common is to give reporting applications some way to
track when a record was first created or when each change was entered.

About Your Update Assist Application

86

Note: If you are using an external DBMS that directly supports Date and Time Stamp field
types, you will not need to use this technique. Instead, make sure the field that contains the
time stamp is set to Changeable = No to prevent Update Assist from touching that field.

Procedure: How to Date-Stamp a Field in an Update Assist Application

To date-stamp a field in an Update Assist application, so that when a user clicks New, the
application can set the initial value of the field to the current date in the stack before it is
displayed in the form:

1. Open the SegmentName.mnt file in the HTML canvas.

2. Add the following line of code to the top of the Maintain Data procedure, just above Case
Top:

MODULE IMPORT(MNTUWS);

This imports the library of functions included with App Studio Maintain Data.

3. Scroll down to the newrecord case and add the following code right below the first Stack
Clear statement:

COMPUTE TheDate/MDY = Today();
COMPUTE stack.datefield = TheDate;

where stack and datefield are the stack name and field name to which you want to assign
the current date.

Note: If you have multiple fields that need to be set to the current date, you only need to set
the variable TheDate once and can reuse it as many times as you need.

Example: Date-Stamping a Field in the MOVIES Data Source

If you wanted the Release Date field from the MOVIES data source to contain the current date,
your code would look like this:

COMPUTE TheDate/MDY = Today();
COMPUTE Movinfo_stack.RELDATE = TheDate;

Auto-numbering Fields in Update Assist Applications

Some DBMSs allow you to create an auto-number field. This automatically fills the field with a
sequence number that is the last record index plus one. This saves the user having to make
up an arbitrary key for the record.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 87

Procedure: How to Auto-Number a Field in an Update Assist Application

To auto-number a field in an Update Assist application, so that when a user clicks New, the
application can set the initial value of the field to the next sequence number in the stack
before it is displayed in the form:

1. Open the SegmentName.mnt file in the HTML canvas.

2. Scroll down to the newrecord case and add the following code right below the first Stack
Clear statement:

Stack clear SegmentNameStk;
For all next MasterFileName.SegmentName.autonum into SegmentNameStk;
NextVal/I5 = SegmentNameStk(SegmentNameStk.FOCCOUNT).val + 1;
Stack clear SegmentNameStk;

Note: If you are using an external DBMS that directly supports Date Stamp field types, you will
not need to use this technique.

Continuing to Display Current Values After a New Action

By default, Update Assist clears all text boxes and controls in the form on a New action. You
can have the values stay in the text boxes by editing the SegmentName.MNT file.

For example, users of some types of applications may be entering many similar records, one
after another, and would like to display a record, then essentially have the New action display
a copy of the record which they can edit before clicking Save.

Procedure: How to Continue Displaying Current Values After a New Action

1. Open the SegmentName.MNT file and go to the newrecord case.

2. Comment out the line that clears the stack, using a double dollar sign ($$).

Calling an Update Assist Procedure From an App Studio Report

One way to use an Update Assist procedure is to call it from an App Studio report. You can set
up the App Studio report so that a user can click on a row in the report and open the Update
Assist procedure with the data from the row of the report.

Procedure: How to Call an Update Assist Maintain Data Procedure From an App Studio Report

1. Create an Update Assist procedure.

2. In the Update Assist - Navigation Options window, select No key values required for your
user interface.

3. In the HTML canvas, create a report using the same data source you used for the Update
Assist application. The report must contain the key fields in the segment you want to
update (if you do not want to view them in the results, you can make them invisible).

Calling an Update Assist Procedure From an App Studio Report

88

4. Select the column you want to make clickable on the report, and on the Appearance tab,
click Drill Down in the Links group.

The Drill Down dialog box opens.

5. Click the Add new item icon to create a new drill down.

6. From the Drill Down Type drop-down menu, select JavaScript.

7. In the Source field, type parent.IbComposer_triggerExecution.

8. From the Target Frame drop-down menu, select _parent.

9. Double-click in the Parameters field to display the Parameters dialog box.

10. Click the Add new item icon to create a parameter.

a. From the Parameter Type drop-down menu, select Constant Value and enter taskn.

where:

taskn

Is the number of the task that launches the Maintain procedure.

b. Click the Add new item icon, and from the Parameter Type drop-down menu, select
Constant Value, and type 1.

c. Click the Add new item icon, and from the Parameter Type drop-down menu, select
Constant Value, and type segname.segnamestk.keyfield.

where:

segname

Is the name of the segment that contains the key field.

segnamestk

Is the name of the segment with stk added to the end.

keyfield

Is the name of the key field selected for drill down.

d. Click the Add new item icon, and from the Parameter Type drop-down menu, select
Field.

e. Select the name of the key field from the drop-down list, as entered in step c.

f. Click Ok to create the drill down.

11. Close your procedure and save it.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 89

When you run your report, you will see that all of the items in the selected column of the report
are underlined and clickable. Clicking any item on the report opens the Update Assist form with
the information for that item already filled in.

Calling an Update Assist Application From an App Studio Report Example

This example describes how to create a report in the HTML canvas and then create a link to a
simple Update Assist application that will update information in the report.

This example is broken down into two steps:

1. Create an Update Assist application that updates an employee from the empdata data
source.

2. Create a report in the HTML canvas that contains a simple list of the employees in the
empdata data source.

Calling an Update Assist Procedure From an App Studio Report

90

When you are done, you will have an App Studio report that displays a list of customers in the
employee data source. Clicking on the PIN adjacent to the last name of someone in this report
will bring up a form where you can change information about the employee, or delete the
employee from the data source. The result is shown in the following image.

Example: Creating an Update Assist Application For the Empdata Data Source

The following is an example of creating an Update Assist application for the empdata data
source.

1. In a Domain folder, create a new HTML page, using the HTML/Document wizard.

2. Attach the ibisamp app folder to the Domain folder, using the Application Paths property in
the File/Folder Properties panel.

3. In the Requests & Data Sources panel, from the New drop-down list, select Embedded
Request and then select New Maintain Data with Update Assist.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 91

4. Select the empdata Master File.

5. In the Update Segment Options section, set Update to Yes.

6. In the Field View Options section, set Changeable to Yes for all fields except PIN, which is a
key field, as shown in the following image.

7. Click Next.

The Update Assist - Navigation Options window opens.

8. Select No key values required and click Finish.

9. Click Yes to start Maintain Data right after the page is loaded.

10.Click Yes to create a multi-page control.

Calling an Update Assist Procedure From an App Studio Report

92

App Studio Maintain Data displays the first screen of the application you created, as shown
in the following image.

11.Open the Tasks & Animations panel.

12.Click the New icon to create task2.

13.From the Trigger Type drop-down list, select TBD (To Be Determined).

14.Click the down arrow, under Requests/Actions.

15.Select Run Request, then empdata, and then empdata.Connect.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 93

The Tasks & Animations screen is shown in the following image.

Example: Creating a Report With the Empdata Data Source

1. Create a report in the HTML canvas:

a. From the Environments tree, right-click the folder that contains the Update Assist
procedure, and select New from the pop-up window, then select Report.

b. Select empdata and click Finish.

2. Place the PIN, LASTNAME, FIRSTNAME, DEPT, and TITLE fields in the report.

3. Select the PIN field on the report, and on the Appearance tab, click Drill Down in the Links
group.

The Drill Down dialog box opens.

4. Click the Add new item icon.

5. From the Drill Menu Items field, delete DrillDown 1.

6. Click the Add new item icon to create a new drill down.

7. From the Drill Down Type drop-down menu, select JavaScript.

Calling an Update Assist Procedure From an App Studio Report

94

8. In the Source field, type parent.IbComposer_triggerExecution.

9. From the Target Frame drop-down menu select _parent.

10.Double-click in the Parameters field to display the Parameters entry screen.

11.Click the Add new item icon to create a parameter:

a. From the Parameter Type drop-down menu, select Constant Value and type task2.

b. Click the Add new item icon, and from the Parameter Type drop-down menu, select
Costant Value, and type 1.

c. Click the Add new item Icon, and from the Parameter Type drop-down menu, select
Constant Value, and type empdata.empdatastk.pin.

d. Click the Add new item icon, and from the Parameter Type drop-down menu, select
Field.

e. From the Parameter Value drop-down menu, select EMPDATA.EMPDATA.PIN.

f. Click Ok to create the drill down.

12.Click OK.

13.Close your procedure and save it.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 95

When you run your report, you will see all of the PIN values in the report are underlined and
clickable, as shown in the following image.

Clicking a PIN on the report opens the Update Assist form with the information for that
name already filled in.

Usage Notes

The following are known issues when using App Studio Update Assist:

Update Assist will not prevent the use of special characters or wildcard designations such
as $* when entering data. Entering such character combinations can cause unexpected
results.

Usage Notes

96

When renaming Update Assist HTML files, the ampersand character (&) is not supported.

Using the browser Refresh action while running an Update Assist application can cause
unexpected results and is not recommended.

Update Assist does not allow updates of cross-referenced segments. You must run the
Update Assist on the individual Master Files and create separate update procedures.

4. Creating an Update Application With Update Assist

App Studio Maintain Data Getting Started 97

Usage Notes

98

AppendixA App Studio Maintain Data Sample Data
Sources

Sample data sources have been used in examples throughout these manuals in order to
provide meaningful examples.

For information on the standard sample data sources, see the Describing Data With
WebFOCUS Language manual.

This chapter contains the Master Files and structure diagrams of the Fannames, Users,
and Contact data sources, which are used exclusively in the App Studio Maintain Data
manuals.

You can find these sample files in the approot/maintain directory.

In this appendix:

Fannames Data Source

Users Data Source

Contact Data Source

Fannames Data Source

The Fannames data source contains email, address, and telephone information for all fans in
a fan club.

Fannames Master File

FILENAME=FANNAMES, SUFFIX=FOC
SEGNAME=CUSTOMER, SEGTYPE=S1
 FIELD=SSN, ALIAS=SSN, FORMAT=A11, $
 FIELD=LASTNAME, ALIAS=LASTNAME, FORMAT=A10, $
 FIELD=FIRSTNAME, ALIAS=FIRSTNAME, FORMAT=A8, $
 FIELD=COMPANY, ALIAS=COMPANY, FORMAT=A12, $
 FIELD=ADDRESS, ALIAS=ADDRESS, FORMAT=A20, $
 FIELD=CITY, ALIAS=CITY, FORMAT=A10, $
 FIELD=STATE ALIAS=STATE, FORMAT=A2, $
 FIELD=ZIP, ALIAS=ZIP, FORMAT=A5, $
 FIELD=PHONE, ALIAS=PHONE, FORMAT=A15, $
 FIELD=EMAIL, ALIAS=EMAIL, FORMAT=A20, $
 FIELD=TITLE, ALIAS=TITLE, FORMAT=A4, $
 FIELD=USER, ALIAS=USER, FORMAT=A9, $

App Studio Maintain Data Getting Started 99

Fannames Structure Diagram

Users Data Source

The Users data source contains personal information about the types of users in a fan club.

Users Master File

FILENAME=FANNAMES, SUFFIX=FOC
SEGNAME=CUSTOMER, SEGTYPE=S1
 FIELD=USER, ALIAS=USER, FORMAT=A9, $
 FIELD=PASS, ALIAS=PASS, FORMAT=A9, $
 FIELD=GROUP, ALIAS=GROUP, FORMAT=A15, $

Users Structure Diagram

Contact Data Source

The Contact data source contains name, address, telephone, title, and position for all
contacts.

Users Data Source

100

Contact Master File

FILENAME=CONTACT, SUFFIX=FOC
SEGNAME=CUSTOMER, SEGTYPE=S1
 FIELD=LAST, ALIAS=LAST, FORMAT=A10, $
 FIELD=FIRST, ALIAS=FIRST, FORMAT=A8, $
 FIELD=COMPANY, ALIAS=COMPANY, FORMAT=A12, $
 FIELD=ADDRESS, ALIAS=ADDRESS, FORMAT=A20, $
 FIELD=CITY, ALIAS=CITY, FORMAT=A10, $
 FIELD=STATE, ALIAS=STATE, FORMAT=A2, $
 FIELD=ZIP, ALIAS=ZIP, FORMAT=A5, $
 FIELD=PHONE, ALIAS=PHONE, FORMAT=A15, $
 FIELD=TITLE, ALIAS=TITLE, FORMAT=A6, $
 FIELD=POSITION, ALIAS=POSITION, FORMAT=A15, $

Contact Structure Diagram

A. App Studio Maintain Data Sample Data Sources

App Studio Maintain Data Getting Started 101

Contact Data Source

102

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software
Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FOCUS, iWay, Omni-Gen, Omni-HealthData, and
WebFOCUS are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.

All other product and company names and marks mentioned in this document are the property
of their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the
readme file for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

 103

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2021. TIBCO Software Inc. All Rights Reserved.

104

Index

$$Declarations comment 24

3GL programs 8

A

Access Files 10

Add parameters option 11

addafan.gif 13, 40

allocating files 81

Dynamic List validation in Update Assist 81

anchor controls 17

App Studio Maintain 7, 9

App Studio Maintain Data 8

benefits 9

n-tier applications 8

App Studio procedures 8

applications 14, 64

application logic 8

closing at run time 10, 38

developing 9

event-driven 64, 67

event-driven processing 67

exiting at run time 10

partitioning 63

running locally 12, 18

stored procedures 8

arguments for Maintain procedures 11

B

Back button 38

background images 39, 40

BackgroundImage property 39, 40

button control 22

C

C/C++ programs 8

CALL command 11, 58, 59

example 61

modularizing code 63

passing variables 60

CASE command 24

child procedures 58

accessing data sources in 62

CICS transactions 8

classes 72, 73

Click event 32

COBOL programs 8

columns in data source stacks 17, 51

comments 24

COMMIT command 62

COMPUTE command 51

concurrent processing 71

CONTACT data source 100

Control Columns dialog box 35

Controls palette 10

App Studio Maintain Data Getting Started 105

controls

aligning;aligning controls 17

grouping 17

moving 17

selecting multiple 17

cross-referenced data sources 67

Current Area columns 56

currfan.gif 13, 40

D

data access logic 10

data continuity 63

data source descriptions 10

data source stacks 17, 43

compared to SPA 43

clearing 31

columns 47, 49

copying data 52

creating 46, 47

Current Area 56

data source-derived columns 47

editing 55

extracting data from data sources 34

implied columns 20

looping through 54

optimizing performance 57

rows 53

sorting 55

user-defined columns 51

writing to data sources 24, 27

data sources 8, 33

accessing in child procedures 62

adding fields to forms 16, 17

concurrent transactions 71

displaying data from 35

expanding in Project Explorer 14

extracting data 34

joined data sources 47

keys 69

logical transactions 71

position in 62, 68

reading 67, 70

sharing 71

specifying in a Maintain procedure 11

updating records 27

writing to 22, 69, 70

date-stamping fields in Update Assist applications

86

Declarations comment 24

DEFINE attribute 51

DELETE command 69

domains

creating 9

drag-and-drop operations 16

adding data source fields to a form 16

drill-down reports

using with Update Assist applications 88

E

Edit Event Handlers button/command 10

Index

106

embedded joins 47

reading 67

empty databases and Update Assist applications

85

END command 24

ENDCASE keyword 24

Enter a List Item dialog box 19

Event Handler editor 10, 32

event-driven processing 64, 67

events 10, 32, 64

Exit button 38

external procedures 9

F

fan.gif 13, 40

FanClub application 13

creating forms 16

displaying fans 33

requirements 13

running locally 18

saving 18

writing to a data source 22

FANNAMES data source 13, 99

adding fields to forms 16

displaying data from 35

using in procedures 24

Field Validation

File dialog box 81

List dialog box 80

Range dialog box 79

fields 14, 51

adding to forms 16, 17

Current Area and 56

renaming prompts 17

selecting for Update Assist 76

flow of control 58

looping 54

FocCount variable 53

FocErrorRow variable 70

FocIndex variable 53

FOCUS code 8

FOR keyword 46

Form Editor 10, 67

displaying rulers 40

Form menu 10

forms 10, 64, 66

closing at run time 38

creating 33, 66

event-driven processing 67

events 64

invoking procedures 66

linking 37

naming 21

selecting options 66

front-end logic 10

functions 10, 22

assigning to events 10, 32

creating 10, 11, 22

editing 24

viewing source code 24

Index

App Studio Maintain Data Getting Started 107

G

GOTO command 63

graphics 39

H

hierarchical data sources 14

HTML Table control 35

I

Image Source dialog box 39, 40

images 39, 40

implied columns 20

IMS/TM transactions 8

INCLUDE command 27, 69

INFER command 24

input parameters for a Maintain procedure 11

J

JavaScript functions

using in applications 10

K

KEEP keyword 63

key fields 14, 69

requirements 69

Key value navigation option for Update Assist 83

L

Language Wizard 10, 11

adding records to a data source 27

clearing data source stacks 31

extracting data from data sources 34

Layout toolbar 10

List Source dialog box 19

listfill.fex file 81

logical transactions 71

concurrent transactions 71

M

MAINTAIN command 24

Maintain Data language 8

Maintain Data procedures 24

viewing source code 24

Maintain Data tutorial 13

13

Maintain language 10

Maintain Language Wizard 10, 11

adding records to a data source 27

clearing data source stacks 31

extracting data from data sources 34

Maintain procedures 10, 14, 17

accessing data sources 11, 62

child 58

components 17

creating 14

data source position 62

event driven 64

Index

108

Maintain procedures 10, 14, 17

flow of control 58

passing variables 60, 61

remote 58–61

setting input and output parameters 11

Master Files 10

MATCH command 67

defining stack columns 47

memory management 63

modular source code 63

N

n-tier applications 8

Navigation options in Update Assist 83

new databases and Update Assist applications 85

New Function dialog box 22

NEXT command 34, 47

defining stack columns 47

set-based processing 67

No key values navigation option for Update Assist

83

using with App Studio reports 88

O

objects 72, 73

operating systems 7

output parameters for Maintain procedures 11

P

parameters 11

passwords

prompting for in Update Assist applications

83

performance 63

memory management 63

pictures 39

platforms 7

Project Explorer 17

expanding data sources 14

prompts for fields 17

property sheet 10, 17

R

Radio button control 19

Range validation option in Update Assist 79

RDBMS stored procedures 8

records 44

adding 27

deleting 44

selecting 44

updating 44

relational data sources 14

remote procedures 58

REPEAT command 54

reports

calling Update Assist applications 88

REPOSITION command 34, 62, 68

RESET keyword 63

Resource Wizard 39

Results page for Update Assist applications 83

Index

App Studio Maintain Data Getting Started 109

return values for Maintain procedures 11

rulers 40

S

saving your work 18

Scratch Pad Area (SPA) 43

script functions

using in applications 10

security

in Update Assist applications 83

SegmentName.mnt file

autonumbering fields 87

date-stamping fields 86

segments 14

Select Segment Fields dialog box 17

servers 8

set-based processing 43, 44, 67

methods 46

shortcuts 16

adding data source fields to a form 16

Show All Files command 10

SHOW keyword in Winform command 24

source code for procedures 24

SPA (Scratch Pad Area) 43

spiralbg.gif 13, 39

stacks 17, 43

compared to SPA 43

clearing 31

columns 47, 49

copying data 52

stacks 17, 43

creating 46, 47

Current Area 56

data source-derived columns 47

editing 55

extracting data from data sources 34

implied columns 20

looping through 54

optimizing performance 57

rows 53

segments 47

user-defined columns 51

writing to data sources 24, 27

Static List validation option in Update Assist 80

syntax color 24

T

Table Column dialog box 35

temporary fields 51

redefining in child procedures 60

Text property 17

Title property 21

Toggle rulers button 40

ToolTipText property 20

Top function 17, 24

transaction processing 71

concurrent transactions 71

transaction values 44

Tree navigation option for Update Assist 83

triggers 64

Index

110

U

untitled forms 21

Update Assist 75

about 85

Automatic validation 76

autonumbering fields 87

calling applications from App Studio reports

88

Combo box navigation option 83

Dynamic List validation option 81

flat files and Dynamic List validation 81

generating application 75

List validation option 80, 81

renaming segments or fields 78

resorting fields 78

sorting fields 78

User interface 83

validation 76

UPDATE command 69

user-defined stack columns 51

USERS data source 100

V

variables 63

memory management 63

passing between procedures 60, 61

VBScript functions

using in applications 10

virtual fields 51

W

Web links

assigning to events 10

WebFOCUS Servers 8

WinClose function 38

WinExit function 38

Winform command 24

wizards 10, 39

Resource Wizard 39

Language Wizard 10, 11

Index

App Studio Maintain Data Getting Started 111

Index

112

	Contents
	1. Introducing App Studio Maintain Data
	Road Map: Where Should You Go?
	What Is App Studio Maintain Data?
	Challenge of Accessing Information
	How App Studio Maintain Data Works
	N-Tier Applications
	Leveraging the Power of the Reporting Server
	What App Studio Maintain Data Can Do for You
	What Is Next?

	Overview of Developing App Studio Maintain Data Applications
	Step 1: Creating the Domain
	Step 2: Describing the Data
	Step 3: Creating the Front End
	Step 4: Creating the Data Access Logic
	Procedure: How to Make a Procedure Access a Database
	Procedure: How to Write Maintain Language Code

	Step 5: Setting Up Front End and Data Access Procedures to Call Each Other
	Procedure: How to Set Up Procedures to Call Each Other

	Step 6: Run the Application

	2. App Studio Maintain Data Tutorial
	Before You Begin
	Creating a Domain
	Procedure: How to Create a Maintain Data Procedure

	Viewing the Structure of a Data Source in the Requests & Data Sources Panel
	Designing a Form
	Procedure: How to Add Data Source Fields to a Form
	What Are Data Source Stacks?
	Components of a Procedure in the Requests & Data Sources Panel
	Moving Controls on a Form
	Procedure: How to Move Controls on a Form

	Saving Your Work
	Running Your Page Locally
	Using Radio Buttons
	Procedure: How to Add a Group of Radio Buttons to the Form
	Procedure: How to Add Tool Tip Text
	Procedure: How to Bind the Results of the Selection to a Stack
	Stacks and Implied Columns

	Giving Your Form a New Title
	Procedure: How to Give Your Form a Title

	Writing Data to the Data Source
	Procedure: How to Add a Button to Your Form
	Writing Functions
	Procedure: How to Write a Function

	About the Maintain Data Editor
	Finding or Replacing Text Using the Find Group
	Reference: Find Dialog Box
	Reference: Replace Dialog Box

	Placing the Cursor Using the Position Group
	Procedure: How to Build Maintain Data Language Code Using the Language Wizard
	Clearing Data From Stacks
	Procedure: How to Clear the Data From a Stack Using the Language Wizard

	Assigning the Function to the Add Button
	Procedure: How to Assign a Function to an Event

	Adding a Form to Display Data From a Data Source
	Procedure: How to Add a New Form to Your Application
	Extracting Data From a Data Source Into a Stack
	Procedure: How to Extract Data From the Fannames Data Source Into a Stack

	Adding an HTML Table to Your Form
	Procedure: How to Add an HTML Table to Your Form

	Creating a Link From One Form to Another
	Procedure: How to Link From One Form to Another

	Adding Form Navigation Buttons
	Procedure: How to Add a Back Button
	Procedure: How to Add an Exit Button

	Adding Images to Your Application
	Procedure: How to Add a New Background Image to Your Form
	Procedure: How to Add an Existing Background Image to Your Form
	Procedure: How to Add an Image to Your Form

	3. App Studio Maintain Data Concepts
	Set-based Processing
	Which Processes Are Set-based?
	How Does Maintain Data Process Data in Sets?
	Creating and Defining Data Source Stacks: An Overview
	Example: Creating and Populating a Simple Data Source Stack

	Creating a Data Source Stack
	Defining Data Source Columns in a Data Source Stack
	Example: Defining Data Source Columns in a Data Source Stack
	Example: Establishing a Path Using Keys and Anchor and Target Segments

	Creating Data Source Stack User-Defined Columns
	Example: Creating a User-Defined Column

	Copying Data Into and Out of a Data Source Stack
	Example: Copying Data Between a Data Source Stack and a Data Source

	Referring to Specific Stack Rows Using an Index
	Looping Through a Stack
	Example: Using REPEAT to Loop Through a Stack

	Sorting a Stack
	Editing and Viewing Stack Values
	Default Data Source Stack: The Current Area
	Maximizing Data Source Stack Performance

	Controlling the Flow of a Procedure
	Executing Other Maintain Data Procedures
	Calling a Maintain Data Procedure on a Different Server
	Example: Calling the EmpUpdat Procedure on a Different Server

	Passing Variables Between Procedures
	Example: Passing Data Between Maintain Data Procedures

	Accessing Data Sources in the Child Procedure
	Data Source Position in Child Procedures
	Advantages of Modularizing Source Code Using CALL
	Optimizing Performance: Data Continuity and Memory Management

	Forms and Event-driven Processing
	How to Use Forms
	Designing a Form
	Designing Event-driven Applications
	Creating Event-driven Applications

	Reading From a Data Source
	Repositioning Your Location in a Data Source
	Example: Repositioning to the Beginning of the Data Source

	Writing to a Data Source
	Evaluating the Success of a Simple Data Source Command
	Example: Evaluating the Success of an UPDATE Command

	Evaluating the Success of a Stack-based Write Command
	Example: Evaluating a Stack-based Update Command

	Transaction Processing
	Example: Logical Transactions in a Bank

	Classes and Objects
	What Are Classes and Objects?

	4. Creating an Update Application With Update Assist
	Starting Update Assist
	Update Assist: Segment & Field Options
	Procedure: How to Rename a Segment or a Field
	Procedure: How to Resort Fields in the Segment & Field Options Window
	Procedure: How to Use a Range to Validate a Field
	Procedure: How to Use a Static List to Validate a Field
	Procedure: How to Use a Dynamic List to Validate a Field

	Update Assist: Navigation Options
	About Your Update Assist Application
	Reference: Working With Empty or New Data Sources
	Calendar Control for Date-Formatted Fields
	Date-Stamping Fields
	Procedure: How to Date-Stamp a Field in an Update Assist Application
	Example: Date-Stamping a Field in the MOVIES Data Source

	Auto-numbering Fields in Update Assist Applications
	Procedure: How to Auto-Number a Field in an Update Assist Application

	Continuing to Display Current Values After a New Action
	Procedure: How to Continue Displaying Current Values After a New Action

	Calling an Update Assist Procedure From an App Studio Report
	Procedure: How to Call an Update Assist Maintain Data Procedure From an App Studio Report
	Calling an Update Assist Application From an App Studio Report Example
	Example: Creating an Update Assist Application For the Empdata Data Source
	Example: Creating a Report With the Empdata Data Source

	Usage Notes

	A. App Studio Maintain Data Sample Data Sources
	Fannames Data Source
	Fannames Master File
	Fannames Structure Diagram

	Users Data Source
	Users Master File
	Users Structure Diagram

	Contact Data Source
	Contact Master File
	Contact Structure Diagram

	Legal and Third-Party Notices
	Index

